Introduction	Related Literature ○	Model 0000000	Equilibrium	Conclusion O	References

"Compatibility and the Product Life Cycle in Two-Sided Markets." Review of Network Economics Volume 12, Issue 2, 2013

Masayoshi Maruyama and Yusuke Zennyo¹

Graduate School of Business Administration, Kobe University

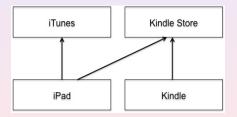
February 14, 2014

¹JSPS Fellow. E-mail: xyzennyo@stu.kobe-u.ac.jp

Introduction	Related Literature	Model	Equilibrium	Conclusion	References
●○○○	○	0000000	0000000000	O	
Introduction					

What is "Two-Sided markets"?

What is the two-sided markets (or platform business)?


Platforms enable interactions between other kind of end-users and try to get the two sides "on board" by appropriately charging each side. [Rochet and Tirole, 2006] (e.g. shopping mall, video game, and e-book reader)

Introduction ○●○○	Related Literature ○	Model 0000000	Equilibrium 0000000000	Conclusion	References
Introduction					

What is "Compatibility"?

E-book reader industry

- Amazon chooses compatibility.
- Apple chooses incompatibility.

Why do these rivals choose opposite strategies with regard to compatibility?

Introduction ○○●○	Related Literature ○	Model 0000000	Equilibrium	Conclusion ○	References
Introduction					

What we study

- Duopoly model of compatibility decisions in two-sided markets.
- The product life cycle and market share affects the compatibility strategy.
- Two-sided platform has two source of profit; hardware and software.
- Choosing compatibility
 - increases the revenue from software.
 - decreases the revenue from hardware.

4 E N 4 E N 4 E N 4 E N

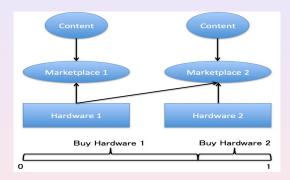
Introduction ○○○●	Related Literature ○	Model 0000000	Equilibrium	Conclusion ○	References
Introduction					

The equilibrium depends on the stage of the product life cycle and market share.

Stage Equilibrium		Major profit center		
Introductory	(IC,IC)	C) Hardware device.		
Growth	(IC,C)	Large platform; Hardware.		
Growin	(C,IC)	Small platform; Royalties.		
Mature	(C,C)	Royalties from content.		

"Compatibility and the Product Life Cyclein Two-Sided Markets."Review of Network EconomicsVolume 12, Issue 2, 2013 Graduate School of Business Administration, Kobe University

Introduction	Related Literature ●	Model 0000000	Equilibrium 0000000000	Conclusion O	References
Related Literature					


Related Literature

Previous literature about compatibility in two-sided market.

- 1. Doganoglu and Wright [2006]
- 2. Casadesus-Masanell and Ruiz-Aliseda [2008]
- 3. Miao [2009]
- 4. Viecens [2011]
 - These previous papers focus on competition given the structure of compatibility.
- The contribution of our work lies in showing the equilibrium structure of compatibility.
- This paper is the first one which shows the interesting point that the equilibrium structure of compatibility changes over the product life cycle.

Introduction	Related Literature ○	Model ●೦೦೦೦೦೦	Equilibrium	Conclusion ○	References
Model					

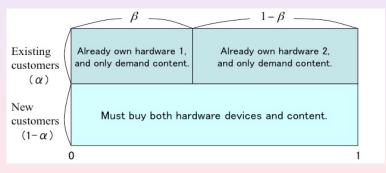
Platforms and Content Providers

- Two content providers, i = 1, 2.
 - *ρ_{ij}*: price of content *i* sold to consumers who own hardware *j*.

Introduction	Related Literature ○	Model ○●○○○○○	Equilibrium	Conclusion ○	References
Model					

Platforms and Content Providers

- Two platforms, i = 1, 2.
 - ▶ *p_i*: Hardware price (marginal cost equals to 0).
 - r: Royalty rate (exogeneous).
 - C or IC: Compatibility decision. (δ_i takes on 1 if platform i chooses compatibility.)
- The profit function of platform *i* is given by


 $\pi_i=p_iD_i+r\rho_{ii}D_i+\delta_ir\rho_{ij}D_j\ (i,j=1,2,\ i\neq j),$

where D_i denotes the demand for the hardware device.

Introduction	Related Literature ○	Model ○○●○○○○	Equilibrium	Conclusion ○	References
Model					

Consumers

Population of consumers.

"Compatibility and the Product Life Cyclein Two-Sided Markets." Review of Network Economics Volume 12, Issue 2, 2013 Graduate School of Business Administration, Kobe University

(日)

Introduction	Related Literature ○	Model ○○○●○○○	Equilibrium	Conclusion ○	References
Model					

- Consumers' decision
 - Hotelling model of product differentiation.
 - The hardware devices are differentiated along the unit interval [0, 1].
 - Ideal points of consumers are distributed uniformly with a unit density.

- t: Constant proportional disutility.
- v: The benefit derived from consumption of the hardware device.
- w(N): Benefit from N varieties of content.
 - where w(1) < w(2) and w(2) w(1) < w(1).

Introduction	Related Literature ○	Model ○○○○●○○	Equilibrium	Conclusion ○	References
Model					

Consumers

The utility function of a new customer who is located at x, buys a hardware device i, and uses its available contents is written as

$$u_i = w(N_i) - \rho_{ii} - \delta_j \rho_{ji} + v - p_i - t|x - x_i|.$$

 N_i is the amount of available content for hardware device i

• x_i is the location of hardware *i*.

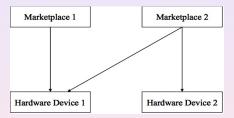
Introduction	Related Literature ○	Model ○○○○○●○	Equilibrium 0000000000	Conclusion ○	References
Model					

- 1. The two platforms choose between compatibility and incompatibility; IC or C.
- 2. Platforms set their hardware prices (*p_i*), and the new consumers purchase one of them.
- 3. Content providers set their content prices (ρ_{ij}), and the customers purchase.

Introduction	Related Literature ○	Model ○○○○○●	Equilibrium	Conclusion ○	References
Model					

Market structures

Given the compatibility decisions in stage one, there are four possible market structures:


- 1. Incompatible platforms in which both platforms choose incompatibility; (IC, IC).
- 2. Compatible platforms in which both platforms choose compatibility; (C, C).
- 3,4. Asymmetric market structures in which one platform chooses incompatibility and the other chooses compatibility; (IC, C) or ; (C, IC).

4 E N 4 E N 4 E N 4 E N

Introduction	Related Literature ○	Model 0000000	Equilibrium ●੦੦੦੦੦੦੦੦੦	Conclusion ○	References
Equilibrium					

The stage three

Here, we consider the Case 3: (IC,C)

- From Church and Gandal [2000], we can derive the content price.
 - When $N_2 = 1$, content price $\rho_{22} = w(1)$.
 - When $N_1 = 2$, content prices

$$\rho_{11}=\rho_{21}=w(2)-w(1)\equiv\Delta w.$$

Introduction	Related Literature ○	Model 0000000	Equilibrium o●oooooooo	Conclusion ○	References
Equilibrium					

The stage two

The utility functions of new customers are

$$\begin{cases} u_1 = w(2) - \rho_{11} - \rho_{21} + v - p_1 - tx \\ = 2w(1) - w(2) + v - p_1 - tx \\ u_2 = w(1) - \rho_{22} + v - p_2 - t(1 - x) \\ = v - p_2 - t(1 - x) \end{cases}$$

The location of a new customer who is indifferent between the two hardware devices is

$$\frac{2w(1) - w(2) + t - p_1 + p_2}{2t}$$

"Compatibility and the Product Life Cyclein Two-Sided Markets."Review of Network EconomicsVolume 12, Issue 2, 2013 Graduate School of Business Administration, Kobe University

A (10) + (10)

Introduction	Related Literature ○	Model 0000000	Equilibrium ○○●○○○○○○○	Conclusion ○	References
Equilibrium					

The stage two

From this, we can derive the demands for hardware devices as follows:

$$D_{1} = \frac{(W + t - p_{1} + p_{2})(1 - \alpha)}{2t},$$
$$D_{2} = \frac{(-W + t - p_{1} + p_{2})(1 - \alpha)}{2t},$$
where, $W \equiv 2w(1) - w(2).$

The profit functions of the platforms are

$$\begin{cases} \pi_1 = p_1 \cdot D_1 + r\rho_{11}(D_1 + \alpha\beta) \\ \pi_2 = p_2 D_2 + r\rho_{22}(D_2 + \alpha(1 - \beta)) \\ + r\rho_{21}(D_1 + \alpha\beta) \end{cases}$$

Introduction	Related Literature	Model 0000000	Equilibrium ooo●oooooo	Conclusion ○	References
Equilibrium					

The stage two

- From the first-order conditions for profit maximization, we have the equilibrium prices, demands, profits, consumer surplus, and social surplus.
- Similarly, we can have the equilibrium under other three market structures as shown in following table.

	(IC, IC)	(C, C)	(IC, C)
π1	$\frac{t}{2}(1-\alpha) + \alpha\beta rw(1)$	$\frac{t}{2}(1-\alpha)+r\Delta w$	$\frac{\frac{(3t+(1-r)W+r\Delta w)^2}{18t}(1-\alpha)}{+\alpha\beta r\Delta w}$
π2	$\frac{t}{2}(1-\alpha) + \alpha(1-\beta)rw(1)$	$\frac{t}{2}(1-\alpha)+r\Delta w$	$\frac{9t^{2} + \{(1-r)W + r\Delta w\}^{2}}{18t}(1-\alpha) + \frac{\alpha r w(1) + r w(2) - (1-\alpha - \alpha r + 3\alpha \beta r)W}{3}$

- * 日 * * 個 * * 画 * * 画 * * 目 * * の < ?

0000 0	0000000	Equilibrium	0	
Equilibrium				

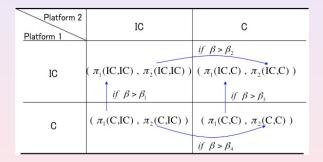
Compare the equilibrium profits shown in Table.

Lemma It follows that

$$\begin{split} \beta > \beta_1(\alpha) &\iff \pi_1(\text{IC}, \text{IC}) > \pi_1(\text{C}, \text{IC}), \\ \beta > \beta_2(\alpha) &\iff \pi_2(\text{IC}, \text{C}) > \pi_2(\text{IC}, \text{IC}), \\ \beta > \beta_3(\alpha) &\iff \pi_1(\text{IC}, \text{C}) > \pi_1(\text{C}, \text{C}), \\ \beta > \beta_4(\alpha) &\iff \pi_2(\text{C}, \text{C}) > \pi_2(\text{C}, \text{IC}), \end{split}$$

Introduction	Related Literature ○	Model 0000000	Equilibrium ooooo●oooo	Conclusion ○	References
Equilibrium					

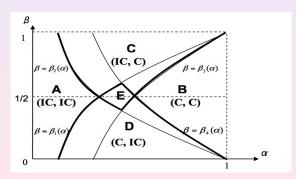
where


$$\begin{split} \beta_{1}(\alpha) &= \frac{6t(b+r\rho) - (b+r\rho)^{2}}{18tr\rho} - \frac{6t(b-2r\rho) - (b+r\rho)^{2}}{18tr\rho \cdot \alpha}, \\ \beta_{2}(\alpha) &= -\frac{6t(b-2r\rho) - (b+r\rho)^{2}}{18tr\rho} + \frac{6t(b-2r\rho) - (b+r\rho)^{2}}{18tr\rho \cdot \alpha}, \\ \beta_{3}(\alpha) &= \frac{6t(b+r\rho) + (b+r\rho)^{2}}{18tr\rho} - \frac{6t(b-2r\rho) + (b+r\rho)^{2}}{18tr\rho \cdot \alpha}, \\ \beta_{4}(\alpha) &= -\frac{6t(b-2r\rho) + (b+r\rho)^{2}}{18tr\rho} + \frac{6t(b-2r\rho) + (b+r\rho)^{2}}{18tr\rho \cdot \alpha}, \\ \beta_{1} + \beta_{2} &= 1, \text{ and } \beta_{3} + \beta_{4} = 1. \end{split}$$

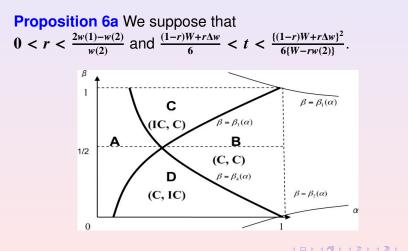
・ロト ・ 一下・ ・ ヨト・

E

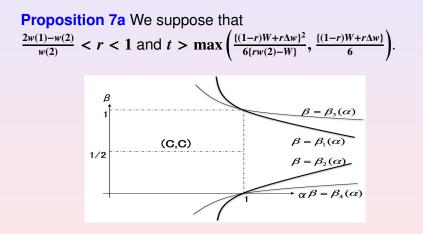
Introduction	Related Literature	Model 0000000	Equilibrium ○○○○○●○○○	Conclusion O	References
Equilibrium					


Summarize the lemma in payoff matrix.

"Compatibility and the Product Life Cyclein Two-Sided Markets."Review of Network EconomicsVolume 12, Issue 2, 2013 Graduate School of Business Administration, Kobe University


Introduction	Related Literature ○	Model 0000000	Equilibrium ooooooo●oo	Conclusion ○	References
Equilibrium					

Proposition 5a We suppose that $0 < r < \frac{2w(1)-w(2)}{w(2)}$ and $t > \frac{((1-r)W+r\Delta w)^2}{6(W-rw(2))}$.



"Compatibility and the Product Life Cyclein Two-Sided Markets."Review of Network EconomicsVolume 12, Issue 2, 2013 Graduate School of Business Administration, Kobe University

Introduction	Related Literature ○	Model 0000000	Equilibrium oooooooo●o	Conclusion O	References
Equilibrium					

Introduction	Related Literature ○	Model 0000000	Equilibrium ooooooooo●	Conclusion O	References
Equilibrium					

"Compatibility and the Product Life Cyclein Two-Sided Markets."Review of Network EconomicsVolume 12, Issue 2, 2013 Graduate School of Business Administration, Kobe University

Conclusion	Introduction	Related Literature ○	Model 0000000	Equilibrium	Conclusion ●	References
	Conclusion					

Conclusion

- The purpose of this paper was to understand how the product life cycle affects the compatibility strategy of platforms in two-sided markets.
- The sort of example we have in mind is the market for electronic books.
 - For the small platform (Amazon), the profitable choice is to make its content compatible and gain royalties from expanding the sale of content.
 - For the large platform (Apple), the profitable choice is to make its content incompatible and maintain its share of the hardware market.

4 E N 4 E N 4 E N 4 E N

Introduction	Related Literature	Model 0000000	Equilibrium	Conclusion ○	References
Conclusion					

References

- R. Casadesus-Masanell and F. Ruiz-Aliseda. Platform competition, compatibility, and social efficiency. *NET Institute Working Paper*, pages 08–32, 2008.
- J. Church and N. Gandal. Systems competition, vertical merger, and foreclosure. *Journal of Economics & Management Strategy*, 9(1): 25–51, 2000.
- T. Doganoglu and J. Wright. Multihoming and compatibility. *International Journal of Industrial Organization*, 24(1):45–67, 2006.
- C.H. Miao. Limiting compatibility in two-sided markets. *Review of Network Economics*, 8(4):346–364, 2009.
- J.C. Rochet and J. Tirole. Two-sided markets: a progress report. *RAND Journal of Economics*, 37(3):645–667, 2006.

M.F. Viecens. Compatibility with firm dominance. *Review of Network Economics*, 10(4):1–25, 2011.