"From Lab to Market": Policy Reforms for More Effective University Technology Transfer

> Mark Schankerman London School of Economics

Forum on Economic Growth and Science, Technology and Innovation Policy (Tokyo)

September 2013

# University research/innovation have "real" effects

50% of basic research in the United States; in Japan, 52% in 2011

- University research stimulates R&D and patenting by private firms through knowledge spillovers, and produces early-stage technologies
- Dramatic increase in university technology transfer in the U.S. in patenting, licenses and revenues (\$186 m. in 1991, \$1.54 b. in 2012)
- U.S. Bayh-Dole Act, 1980: Universities/public research organizations got ownership of inventions from federally-funded R&D, with mandate to transfer technology and share revenues with inventors. Universities had required approval from each funding agency. Licensing occurred before Bayh-Dole, but higher transactions cost and uncertainty.
- Japan: Similar reforms began in 1998, culminating in corporatization of national universities and public research organizations.

# **Topics for Today:**

- 1. What are key benefits (and costs) of university technology transfer?
- 2. What policy reforms are needed to make the process more effective?
  - Monetary incentives
  - Efficient structure for the "market for technology transfer"
    - Role for Consolidation
    - □ Role for Competition
  - Other features of the "innovation ecosystem"

# **University-Private Sector S&T Links**



**Corporate Research Funding** 

**Key Benefit:** Economic gains from *"efficient delegation"* in developing and commercializing university inventions

- Finding licensees who can extract maximum value from the invention, who may not be local (not making money for its own sake)
- Need monetary incentives so universities exert effort to find licensees, and clear property rights so licensees are willing to contract and make required downstream investments

## **Other Benefits:**

- Stronger incentives for university scientists to focus on commercially relevant technologies (but may be a potential cost)
- Supplementary income source for universities [careful, revenues are highly skewed and hard to predict]

### **Potential Costs**

- Redirecting basic to applied research/patenting activity
  - Evidence does not indicate that patenting replaces publications.
    They typically go together (complements not substitutes)
  - Need to ensure rigorous publication standards for tenure to protect academic quality
- Restricting 'open science'
  - Evidence does not indicate substantial increase in delays in publishing research findings or delays/ refusals to engage in material transfer agreements (information sharing)

# **University-Private Sector S&T Links**



Reform 1: Introduce performance-based incentives to faculty scientists. They strongly affect university innovation and technology transfer performance

U.S. universities formally share royalties (and cashed in equity) with faculty scientists. This gives them "high-powered" incentives.

Universities publish royalty schedules. They are part of the faculty employment contract. Royalties received by the university are divided between the inventor, lab, department, university

### 'Inventor royalty share': cash directly to inventor or to her lab

#### Three key characteristics of inventor royalty shares:

- 1. Very large variation across universities
- 2. Observe both constant rate and variable rate sharing schedules
- 3. Variable rate sharing is always regressive (i.e., the inventor keeps a smaller share at higher levels of license income)

### **Inventor Royalty Shares in U.S. Universities**

|                    | Average | Minimum | Maximum |
|--------------------|---------|---------|---------|
| Constant sharing   | 41      | 21      | 65      |
| Variable sharing   | 51      | 20      | 97      |
| < 10.000 (\$)      | 53      | 20      | 100     |
| 10 -50,000         | 45      | 20      | 93      |
| 50-100,000         | 42      | 20      | 85      |
| 100-300,000        | 35      | 20      | 85      |
| 300-500,000        | 33      | 20      | 85      |
| 500,000- 1 million | 32      | 20      | 85      |
| > 1 million        | 30      | 15      | 85      |

Finding 1:Inventor royalty shares <u>strongly</u> affect license income. A 10 percentage point increase in inventor share raises license income by an average of 19%. In private universities the impact is 50%.

Gatekeeper Effect: The impact of royalty incentives depends on the effectiveness of TLO

□ If a TLO is ineffective (many scientists complain about them) and has monopoly power over commercialization, as in the U.S., changing incentives will not have much effect.

□ Thus reforming royalty incentives needs to go together with policies to make the TLO's more effective. These are **complementary policy instruments**.

# **University-Private Sector S&T Links**



Reform 2: Introduce performance incentives in TLO's. They strongly affect the TLO's performance. But think carefully before adopting local development focus.

Technology transfer 'performance' has multiple dimensions:

- Number of licenses (both exclusive and non-exclusive)
- Number of start ups (how should the mix between licensing to start ups and existing firms be determined)?
- Royalty income (or cash value of equity) per license

## **Incentives and Local Development Bias in TLO's**

|                                                      | Public<br>University | Private<br>University |
|------------------------------------------------------|----------------------|-----------------------|
| Use of Bonus as Incentive (% yes)                    | 49                   | 79                    |
| <i>Objectives<br/>(% "important/very important")</i> |                      |                       |
| 1. Number of licenses                                | 97                   | 100                   |
| 2. License income                                    | 88                   | 93                    |
| 3. Promoting local development                       | 88                   | 57                    |

**FINDING 2.1**: Performance incentives (bonuses) in TLO's raise income per license by 30-45%.

# **FINDING 2.2**: Incentives do not affect the number licenses per invention.

➢ Why? Because managers can more easily monitor the number of licenses than income per license -- "what might have been" -- so incentives are less important. ["Monitoring versus incentives"]

**FINDING 2.3**: Incentives do not affect the number of start-ups per license (i.e., the licensing mode).

But all this depends on <u>how</u> incentives are structured, and this should depend on what the underlying objectives are.

Finding 2.4: Strong local development bias reduces income per license by 30% but raises licenses per invention by 30% (higher 'quantity', lower 'quality' licenses)

- Local development bias has a large implicit "cost" 'inefficient delegation' and less licensing income.
- Do the 'local multiplier' (agglomeration) effects, or other benefits, make this licensing policy worthwhile?

Finding 2.5: Strong local development bias increases local knowledge spillovers

So there is a "benefit" to this policy, to be weighed against the income loss we discussed earlier

# **University-Private Sector S&T Links**



## **Reform 3: Ensure an Efficient Market Structure**

## **Current institutional arrangements in U.S.**

- > TLO has a monopoly to commercialize inventions ("right of first refusal").
- Most TLO's are very small (average size < 5 professionals).</p>

Broadly similar arrangements in Japan since 2004. The main exception is the very interesting case of the Kansai TLO, a private organization that is the exclusive licensing agent for a number of universities.

Does this market structure make sense? Are there others that might be more efficient?

# **Some Alternative Institutional Structures**

- How much specialisation and consolidation should there be? It depends on where we think the *economies of scale/scope* are.
  - Administrative economies (spreading fixed overheads)
  - Informational economies: identifying potential licensees
    - Specializing in technology field cutting across regions?
      [I know of no examples]
    - Specializing by region cutting across technology fields? [California central TLO, Munich]

2. Monopoly or competition in technology licensing activity?

Should the university TLO be the gatekeeper? Why do we think "island monopolies" makes sense here, but not in other contexts?

# What form might competition take?

- Competition "for" the Market: Exclusive (competitive) contracts to private licensing firm for a fixed period of time [e.g., Kansai TLO in Japan – an example worthy of more attention]
- 2. Limited Monopoly: Impose time limits on the exclusive rights of the TLO. Give inventors the right to use other agents after that.
- **3.** Competition "in" the Market: Remove TLO monopoly (or preferably, privatize them). Require inventors to register inventions with a central university 'Information Repository', but also the right to use private licensing intermediaries (royalty sharing can be adjusted if university does not do the licensing) e.g., some Canadian universities

# What Else is Needed in the Innovation Ecosystem?

### 1. Vibrant venture capital markets

- Facilitate new start-ups built on university research and innovations, and 'democratize' commercialization activity among many firms
  - Role for start-ups and established firms varies by sector
  - Opening this up is especially important in Japan, where large firms currently dominate the commercialization process
    [as argued by Robert Kneller, *Bridging Islands*)
- 2. "Flexibility to Fail" (and Restart): Institutions that underpin risk-taking are key to high-tech entrepreneurship
  - Bankruptcy rules
  - Flexible labour markets (low costs of hiring and firing workers)
  - Cultural 'acceptance' of risk-taking and failure

# **Summary of Key Findings and Policy Messages**

- 1. Strong incentives for scientists and clarity of property rights are important for stimulating innovation and licensing by universities
- 2. Need to coordinate policies on inventor incentives and TLO effectiveness
- 3. Strong incentives within the TLO are effective, and not widely used
- 4. Local development objectives are costly but generate more local knowledge spillovers. Policy debate about their desirability is needed.
- 5. Institutional (market) structure of technology licensing activity is important and badly structured. There is a serious need to redesign policy and to introduce effective competition into the system.

## Key References

Saul Lach and Mark Schankerman (2008), "Incentives and Invention in Universities," *RAND Journal of Economics*, 39: 403-433

Sharon Belenzon and Mark Schankerman (2009), "University Knowledge Transfer: Private Ownership, Incentive and Local Development Objectives," *Journal of Law and Economics*, 52: 111-144

Sharon Belenzon and Mark Schankerman (2013), "Spreading the Word: Geography, Policy and Knowledge Spillovers," *The Review of Economics and Statistics*, 95(3): 884-903