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Abstract 

Background 
In duration analysis, we find situations where covariates are simultaneously determined along with 
the duration variable. Moreover, although the models based on a hazard rate do not explicitly assume 
heterogeneity, in applied econometrics, the possibility of omitted variables is inevitable and 
controlling population heterogeneity alone is inadequate. It is important to consider both 
heterogeneity and endogeneity in duration analysis.  
 
Objectives and methods 
Explicitly assuming semiparametric correlated heterogeneity, this paper proposes an alternative 
robust duration model with an endogenous binary variable that generalizes the heterogeneity of both 
duration and endogeneity using Hermite polynomials. Under these setups, we investigate the 
difference between the endogenous binary variable's coefficients of the parametric and 
semiparametric models using the Medical Expenditure Panel Survey (MEPS) data. 
 
Results 
The parameter values of the endogenous binary variable (insurance choice) are statistically 
significant at the 1% level; however, the values differ among the parametric and semiparametric 
models and the any type of insurance choice increases the length of hospital stays by 104.010% in 
the censored parametric model, and 182.074% in the censored semiparametric model. Compared 
with the parametric model, the increase of hospital stays in the semiparametric model is large. 
Moreover, we find that the semiparametric model a twin-peak distribution and that the contour lines 
differ from the usual ellipsoids of the bivariate normal density. 
 
Conclusions 
When applied to the duration of hospital stays of the MEPS data, the estimated results of the 
semiparametric model shows a good performance. The absolute values of the endogenous binary 
regressor coefficients of the semiparametric models are larger than that of the parametric model. The 
parametric model underestimates the effect of the individual's insurance choice in our example. 
Moreover, the estimated densities of the semiparametric models have twin peak distribution.  
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1. Introduction 
 
In microeconometrics, especially in health econometrics, it is widely known that endogenous 
regressors cause the possibility of inconsistent parameter estimation. Here endogeneity is defined as 
a regressor that is correlated with the error term. For example, when we analyze the influence of a 
physician’s advice to reduce alcohol consumption, the error term contains all factors other than the 
advice concerning alcohol, such as whether the patient has private medical insurance (Kenkel and 
Terza, 2001). If privately insured patients are more likely to receive lifestyle advice, the error term 
and the advice are correlated, and endogeneity occurs. Endogeneity is a problem because ordinary 
least squares (OLS) estimates of all regression parameters are generally inconsistent if any regressor 
is endogenous (unless the exogenous regressor is uncorrelated with the endogenous regressor). 
Endogeneity does not arise in health econometrics if data are randomly assigned or regressors are 
not the results of incentives. However, these conditions are seldom fulfilled in social sciences 
research; endogeneity is inevitable, and a method to treat it correctly is required.  

In nonlinear (discrete, censored, or truncated) regression used in health econometrics, such as 
binary variable and count data models, correlation between a regressor and error term (endogeneity) 
leads to inconsistently estimated regression parameters. Even so, a two-stage method used in many 
linear models sometimes works poorly in nonlinear regression with endogeneity. More concretely, if 
the two stage method is applied in estimating nonlinear models, such as probit and count data 
models, with endogenous discrete, censored, or truncated regressors, the estimated parameters have 
no consistency.  

Table 1 explains this discussion. In Rows 2 and 3 in Table 1, the two-stage method has 
consistency in linear models regardless irrespective of any endogenous regressors. In Rows 4 and 5, 
in nonlinear models, the two-stage method is consistent when endogenous variables are continuous, 
but the full information maximum likelihood (FIML) has consistency when endogenous variables 
are discrete, censored, or truncated.  
 

<<Insert Table 1>> 
 

In duration (survival) analysis, we find situations where covariates (especially an endogenous 
binary variable) are simultaneously determined along with the duration variable. As is the case with 
many nonlinear models, the endogeneity problem in duration analysis is cumbersome because the 
existence of censored duration data leads to non-linearity, leading the two-stage method to become 
inconsistent (Wooldridge, 2002, p.478). Some studies have been conducted to analyze the 
endogeneity problem in duration analysis. Bijwaard and Ridder (2005) propose a two-stage 
instrumental variable estimator for duration data based on the generalized accelerated failure model 
that contains the proportional hazard model as a special case. However, the models based on a 
hazard rate do not explicitly assume heterogeneity. In applied econometrics, the possibility of 
omitted variables is inevitable and controlling population heterogeneity alone is inadequate. 
Therefore, in duration analysis, it is important to consider both heterogeneity and endogeneity.  

This paper proposes an alternative semiparametric duration model with an endogenous binary 
variable that generalizes the heterogeneity of both duration and endogeneity. The generalization of 
heterogeneity is done as follows: first, we consider a simple lognormal duration model with an 
endogenous binary variable; next, we assume heterogeneity that follows a semiparametric bivariate 
distribution using Hermite polynomials based on van der Klaauw and Koning (2003). Under these 
setups, we investigate the difference between the endogenous binary variable's coefficients of the 
parametric and semiparametric models using the Medical Expenditure Panel Survey (MEPS) data 
employed by Prieger (2002).  

Using examples of probit models, Section 2 explains the two-stage method used in nonlinear 
models with endogenous continuous regressors. We demonstrate that, in nonlinear regression with 
endogenous discrete, censored, or truncated regressors, the two-stage method is inadequate and the 
FIML is consistent. Moreover, this section provides simple Monte Carlo simulations and analyzes 
the consistency of proposed models. Section 3 proposes a semiparametric duration model with an 
endogenous binary variable and censored data. Section 3 depicts the application of the length of 
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hospitalizations, and Section 4 presents our concluding remarks.  
 
 
2. Endogenous Regressors in Nonlinear Econometric Models 
 
Before discussing duration analysis with an endogenous binary variable, this subsection considers 
estimation for nonlinear models with an endogenous binary or continuous variable, using a probit 
model, because the properties of censored data are essentially same as those of binary data. For 
simplicity, we discuss one endogenous regressor. 
 
A Continuous Endogenous Regressor in Binary Models 
 
A probit model with a continuous endogenous explanatory variable takes the following form: 

 𝑦𝑦1∗ = 𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜀𝜀1, (1)  
 𝑦𝑦2 = 𝑧𝑧′𝛽𝛽2 + 𝜀𝜀2, (2)  

where (𝜀𝜀1, 𝜀𝜀2) has a zero mean, a bivariate normal distribution, and is independent of 𝑧𝑧. The 
observed binary outcome is 𝑦𝑦1 = 1  if 𝑦𝑦1∗ > 0  and 𝑦𝑦1 = 0  otherwise. If 𝜀𝜀1  and 𝜀𝜀2  are 
independent, there is no endogeneity. Since 𝜀𝜀2 is normally distributed, we assume 𝑦𝑦2 is normal 
given 𝑧𝑧. Therefore, 𝑦𝑦2 is a normal random variable.  
    Rivers and Vuong (1988) proposed a method for estimating a probit model with a continuous 
endogenous explanatory variable. Their method is a useful two-stage approach leading to a simple 
test for endogeneity of 𝑦𝑦2. See also Wooldridge (2002) and Wikelmann and Boes (2006) for a 
discussion of the procedure. Assume that 𝜀𝜀1 and 𝜀𝜀2 are bivariate normal distributed with zero 
mean, correlation 𝜌𝜌, and variance  1 and 𝜎𝜎22, respectively. We can write 

 𝜀𝜀1 = 𝜃𝜃1𝜀𝜀2 + 𝑢𝑢1, (3)  
where 𝜃𝜃1 = 𝜌𝜌/𝜎𝜎2 , 𝜎𝜎22 = Var(𝜀𝜀2), and 𝑢𝑢1  is independent of 𝑧𝑧  and 𝜀𝜀2  (and therefore of 𝑦𝑦2 ). 
Because of joint normality of (𝜀𝜀1, 𝜀𝜀2) , 𝑢𝑢1  is also normally distributed with E[𝑢𝑢1] =0 and 
Var[𝑢𝑢1] = Var[𝜀𝜀1]− 𝜌𝜌2. We can now write 

 𝑦𝑦1∗ = 𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜃𝜃1𝜀𝜀2 + 𝑢𝑢1, 
𝑢𝑢1|𝑧𝑧,𝑦𝑦2, 𝜀𝜀2~𝑁𝑁(0,1− 𝜌𝜌2).  

    Thus, 𝜀𝜀1 = �1 − 𝜌𝜌2𝑢𝑢 + 𝜌𝜌𝜀𝜀2/𝜎𝜎2, where 𝑢𝑢~𝑁𝑁(0,1). We can write the first equation conditional 
on 𝜀𝜀2 as 

 𝑦𝑦1∗ = 𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + �1 − 𝜌𝜌2𝑢𝑢 + 𝜃𝜃1𝜀𝜀2.  
A standard calculation shows that 

 P(𝑦𝑦1 = 1|𝑧𝑧, 𝑦𝑦2, 𝜀𝜀2) = Φ�(𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜃𝜃1𝜀𝜀2)/(1− 𝜌𝜌2)1/2�. (4)  
Assuming for the moment that we observe 𝜀𝜀2, then probit of 𝑦𝑦1 on 𝑧𝑧, 𝑦𝑦2, and 𝜀𝜀2 consistently 
estimates 𝛽𝛽𝜌𝜌1 ≡ 𝛽𝛽1/(1− 𝜌𝜌2)1/2 , 𝛼𝛼𝜌𝜌1 ≡ 𝛼𝛼1/(1− 𝜌𝜌2)1/2 , and 𝜃𝜃𝜌𝜌1 ≡ 𝜃𝜃1/(1− 𝜌𝜌2)1/2 . Note that 
because 𝜌𝜌2 < 1, each scaled coefficient is greater than its unscaled counterpart unless 𝑦𝑦2  is 
exogenous (𝜌𝜌 = 0).  
    The Rivers and Vuong (1988) approach takes the following two stages. First, run the OLS 
regression 𝑦𝑦2 on 𝑧𝑧 and save the residuals 𝜀𝜀2̂. Second, the probit 𝑦𝑦1 on 𝑥𝑥, 𝑦𝑦2, and 𝜀𝜀2�  obtains 
consistent estimators of the scaled coefficients 𝛽𝛽𝜌𝜌1, 𝛼𝛼𝜌𝜌1, and 𝜃𝜃𝜌𝜌1. The probit parameters are 
estimated only up to scale, with factor (1− 𝜌𝜌2)−1/2. An estimate for 𝜌𝜌 is 𝜌𝜌�2 = 𝜃𝜃�𝜌𝜌2𝜎𝜎�22/�1 + 𝜃𝜃�𝜌𝜌2𝜎𝜎�22�, 
where 𝜎𝜎�2 is the square root of the usual error variance estimator from the first stage regression.  

The Rivers and Vuong approach simplifies testing the exogeneity of 𝑦𝑦2. A 𝑧𝑧-test of the null 
hypothesis H0: 𝜃𝜃1 = 0 tests whether 𝑦𝑦2 is exogenous. If there is evidence of endogeneity (𝜃𝜃1 ≠ 0) 
and we apply a two-stage procedure to find consistent estimators, the usual probit parameters must 
be adjusted to account for the first stage estimation. Under H0: 𝜃𝜃1 = 0, we find 𝑢𝑢1 = 𝜀𝜀1, and the 
distribution of 𝜀𝜀2 plays no role under the null. Therefore, the test of exogeneity is effective without 
assuming normality or homoskedasticity of 𝜀𝜀2 . Unfortunately, if 𝑦𝑦2  and 𝜀𝜀1  are correlated, 
normality of 𝜀𝜀2 is crucial.  
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A Binary Endogenous Regressor in Binary Models 
 
We now consider the case where the probit model contains an endogenous binary explanatory 
variable. The model describes as follows: 

 𝑦𝑦1 = 1[𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜀𝜀1 > 0], (5)  
 𝑦𝑦2 = 1[𝑧𝑧′𝛽𝛽2 + 𝜀𝜀2 > 0], (6)  

where 1[∙] is an indicator function, (𝜀𝜀1, 𝜀𝜀2) is independent of 𝑧𝑧  and distributed as bivariate 
normal with mean zero and covariance matrix (1,𝜌𝜌, 1). If 𝜌𝜌 ≠ 0, then 𝜀𝜀1 and 𝑦𝑦2 are correlated, 
and the probit estimation is inconsistent for 𝛽𝛽1 and 𝛼𝛼1. In this model, the effect of 𝑦𝑦2 is often of 
primary interest, especially when 𝑦𝑦2  indicates participation in some program, such as health 
maintenance, and the binary outcome 𝑦𝑦1 might denote a subjective health index. Then the average 
treatment effect (for a given value of 𝑥𝑥) is calculated by Φ(𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1)−Φ(𝑥𝑥′𝛽𝛽1).  

The likelihood function is easily calculated using the conditional density and truncated normal 
distributions. The conditional density of 𝑦𝑦1 given (𝑦𝑦2, 𝑧𝑧) takes the following form: 

 P(𝑦𝑦1 = 1|𝑦𝑦2, 𝑧𝑧) = Φ�
𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜌𝜌𝜀𝜀2

(1− 𝜌𝜌2)1/2 �. (7)  

Moreover, the truncated density of 𝜀𝜀2 given 𝜀𝜀2 > −𝑧𝑧′𝛽𝛽2 obtains 

 
𝜙𝜙(𝜀𝜀2)

Φ(𝜀𝜀2 > −𝑧𝑧′𝛽𝛽2) =
𝜙𝜙(𝜀𝜀2)
Φ(𝑧𝑧′𝛽𝛽2). (8)  

Therefore, the density P(𝑦𝑦1 = 1|𝑦𝑦2 = 1, 𝑧𝑧) takes 

 P(𝑦𝑦1 = 1|𝑦𝑦2 = 1, 𝑧𝑧) =
1

Φ(𝑧𝑧′𝛽𝛽2)� Φ�
𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜌𝜌𝜀𝜀2

(1− 𝜌𝜌2)1/2 �d𝜀𝜀2
∞

−𝑧𝑧′𝛽𝛽2
. (9)  

Similarly, P(𝑦𝑦1 = 1|𝑦𝑦2 = 0, 𝑧𝑧) is 

 P(𝑦𝑦1 = 1|𝑦𝑦2 = 0, 𝑧𝑧) =
1

1 −Φ(𝑧𝑧′𝛽𝛽2)� Φ�
𝑥𝑥′𝛽𝛽1 + 𝜌𝜌𝜀𝜀2
(1− 𝜌𝜌2)1/2�d𝜀𝜀2

−𝑧𝑧′𝛽𝛽2

−∞
. (10)  

Combining the four possible outcomes of (𝑦𝑦1,𝑦𝑦2), we obtain the log-likelihood function of the 
probit model with a binary endogenous explanatory variable.  
   Since the log-likelihood function includes a single integral but has no analytical solution, we 
evaluate the likelihood using a numerical integral. If the integral is distributed over [−∞,∞], the 
log-likelihood is easily evaluated by applying Gauss-Hermite quadrature. In this model, we calculate 
the log-likelihood function using 𝜀𝜀𝑞𝑞 > −𝑧𝑧′𝛽𝛽2 , where 𝜀𝜀𝑞𝑞  is the evaluation point of the 
Gauss-Hermite quadrature. Since −𝑧𝑧′𝛽𝛽2 is not constant under the maximization process, a small 
change in the value of 𝛽𝛽2  does not alter the likelihood, and thus the performance of the 
Gauss-Hermite quadrature is low. The simulated maximum likelihood method avoids this problem 
but needs many evaluation points to approximate the integral accurately. Moreover, calculating the 
accurate likelihood is time consuming.  

Therefore, it is possible to apply the Rivers and Vuong two-stage approach for estimating the 
probit model with an endogenous binary explanatory variable: since E(𝑦𝑦2|𝑧𝑧) = Φ(𝑧𝑧′𝛽𝛽2) and 𝛽𝛽2 is 
consistently estimated by the probit of 𝑦𝑦2 on 𝑧𝑧, it is tempting to estimate 𝛽𝛽1 and 𝛼𝛼1 from the 
probit of 𝑦𝑦1 on 𝑥𝑥 and Φ�2, where Φ�2 ≡ Φ(𝑧𝑧′𝛽𝛽2). However, the two-stage method is inappropriate 
because the estimated coefficients are inconsistent. Although the two-stage method requires 
P(𝑦𝑦1 = 1|𝑧𝑧) = Φ[𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1Φ(𝑧𝑧′𝛽𝛽2)], we can compute only the expected value P(𝑦𝑦1 = 1|𝑧𝑧) =
E(𝑦𝑦1 = 1|𝑧𝑧) = E(1[𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜀𝜀1 > 0]). Since the indicator function 1[∙] is nonlinear, we 
cannot correctly specify the expected value. If, substituting 𝛽̂𝛽2, we can compute the correct and 
complicated formula for P(𝑦𝑦1 = 1|𝑧𝑧), the two-stage approach produces consistent estimators, but 
the FIML is easier and more efficient.  
 
Monte Carlo Results 
 
We summarize results of the Monte Carlo experiments of linear estimation with endogenous 
continuous and binary variables to evaluate the finite sample performance. We show the 
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inconsistency of the two-stage method in estimating nonlinear models, such as probit models, with 
an endogenous binary variable. The Monte Carlo simulations are designed as follows. We generate 
one explanatory variable, 𝑧𝑧1 , drawn independently from 𝑁𝑁(0,1/4) , and two unobserved 
heterogeneity terms, 𝜀𝜀1 and 𝜀𝜀2, normally distributed as 𝑁𝑁�(0,0), (𝜎𝜎12,𝜌𝜌𝜎𝜎1𝜎𝜎2,𝜎𝜎22)�. The variable 
𝑦𝑦2  represents an endogenous continuous variable assumed to be generated by the process  
𝑦𝑦2 = 𝑧𝑧′𝛽𝛽2 + 𝜀𝜀2; 𝑑𝑑 represents an endogenous binary variable and is assumed to be generated by the 
process 𝑑𝑑 = 1 if  𝑑𝑑∗ = 𝑧𝑧′𝛽𝛽2 + 𝜀𝜀2 and 𝑑𝑑 = 0; otherwise, where 𝑧𝑧 = [1, 𝑧𝑧1]′ and 𝛽𝛽2 = [𝛽𝛽21,𝛽𝛽22]′. 
Variable 𝑦𝑦1 represents a binary dependent variable assumed to be generated by the process 𝑦𝑦1 = 1 
if 𝑦𝑦1∗ = 𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑑𝑑 + 𝜀𝜀1 > 0 (for an endogenous binary variable) or 𝑦𝑦1∗ = 𝑥𝑥′𝛽𝛽1 + 𝛼𝛼1𝑦𝑦2 + 𝜀𝜀1 > 0  
(for an endogenous continuous variable) and 𝑦𝑦1 = 0; otherwise. All true values for the parameters 
𝛽𝛽11 = 𝛽𝛽12 = 𝛽𝛽21 = 𝛽𝛽22 = 0.5 and 𝜎𝜎1 = 𝜎𝜎2 = 1 are the same for each experiment. Correlation 
parameter 𝜌𝜌 takes values of 0.3, 0.6, and 0.9. The number of simulations used in all experiments 
is set to 100, and the sample sizes are 1,000 and 2,000 observations per Monte Carlo iteration. 
Simulations are performed on Intel Core 2 Duo workstations using GAUSS.  
    Tables 2 show the results of Monte Carlo experiments on probit models with endogenous 
continuous and binary variables. The experiment is estimated using the two-stage method in Table 2 
(a) and both the two-stage method and FIML in Table 2 (b). Although, as previously analyzed, the 
two-stage method is inconsistent in estimating the probit model with an endogenous binary variable, 
we confirm the extent of this problem. From Table 2 (a), the mean bias (BIAS) and root mean 
squared error (RMSE) of an endogenous continuous variable decrease when the number of 
observations is large. Since the test statistics that an endogenous variable equals the true value are 
not rejected at 50%, this experiment shows consistency of the parameter 𝛽𝛽12.  
 

<<Insert Table 2>> 
 

The results of probit models with an endogenous binary variable appear in Table 2 (b). FIML 
results show the phenomena of consistency, although BIAS and RMSE do not always decrease. The 
test statistics of H0: 𝛽𝛽11 = 0.5 or 𝛽𝛽12 = 0.5 are not rejected at the 50% level. However, in the 
two-stage method, the values of BIAS and RMSE are larger than those of FIML. The test statistics of 
H0: 𝛽𝛽11 = 0.5 or 𝛽𝛽12 = 0.5 are rejected at the 5% level in the case of 𝑁𝑁 = 2,000 and 𝜌𝜌 = 0.9. 
That is, the estimated estimators of the two-stage method are statistically different from the true 
values. Although the test statistics are not rejected if 𝜌𝜌 is small, the inconsistency is apparent if 𝜌𝜌 
is large. These results suggest it is necessary to use the FIML estimator and not the two-stage method 
when estimating a probit model with an endogenous binary variable.  
 
 
3. Semiparametric Duration Analysis with an Endogenous Binary Variable 
 
Regardless of whether endogenous regressors are continuous, linear models with those variables 
display consistency using the two-stage method. This characteristic is convenient because OLS 
achieves a range of consistency. Therefore, although it is difficult to obtain instruments that are 
uncorrelated with the error term and correlated with regressors, the two-stage method in linear 
models with endogenous variables presents no serious theoretical problem.  

If the two-stage method is applied in estimating nonlinear models with endogenous discrete, 
censored, or truncated regressors, the estimated parameter has no consistency. Hence, estimating 
duration analysis with an endogenous binary variable requires FIML. However, this method always 
contains the problem of specifications of distribution. That is, if the distributions of both nonlinear 
duration and endogenous variables are not specified correctly, estimated coefficients fail to attain 
consistency. Since the true distribution remains unknown, this problem is always discussed. One way 
to avoid a specification problem is to generalize distributions of dependent and endogenous variables. 
That is, introduce semiparametric distributions.  

We consider a lognormal model in duration analysis based on Masuhara (2007): ln𝑡𝑡𝑖𝑖 = 𝛽𝛽𝑑𝑑𝑑𝑑𝑖𝑖 +
𝑥𝑥𝑖𝑖′𝛽𝛽1 + 𝜀𝜀1𝑖𝑖 , where 𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 , is an observed duration outcome that has a continuous 
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probability density 𝑓𝑓(𝑡𝑡𝑖𝑖); 𝑥𝑥𝑖𝑖~𝑘𝑘1 × 1 and 𝑧𝑧𝑖𝑖~𝑘𝑘2 × 1 denote regressors (explanatory variables or 
covariates); 𝛽𝛽1 and 𝛽𝛽𝑑𝑑 denote vectors of unknown parameters; 𝜀𝜀1𝑖𝑖 is unobserved heterogeneity. 
Moreover, 𝑑𝑑𝑖𝑖 represents a binary endogenous variable and is assumed to be generated by the 
process 𝑑𝑑𝑖𝑖 = 1 if 𝑑𝑑𝑖𝑖∗ = 𝑧𝑧𝑖𝑖′𝛽𝛽2 + 𝜀𝜀2𝑖𝑖 ≥ 0 and 𝑑𝑑𝑖𝑖 = 0 otherwise, where 𝑑𝑑𝑖𝑖∗ is a latent variable; 𝜀𝜀2𝑖𝑖 
is unobserved heterogeneity; 𝛽𝛽2 denotes a vector of parameters. In this model, a random variable 𝑡𝑡𝑖𝑖 
is a linear function of 𝜀𝜀1𝑖𝑖. Therefore, we concentrate on the joint distribution of (𝜀𝜀1𝑖𝑖 , 𝜀𝜀2𝑖𝑖). It is 
natural to assume that (𝜀𝜀1𝑖𝑖 , 𝜀𝜀2𝑖𝑖)  follows bivariate normal distribution with mean zero and 
covariance matrix (𝜎𝜎12,𝜌𝜌𝜎𝜎1, 1), i.e., a linear model with an endogenous binary variable. However, 
this normally distributed assumption leads to a specification problem. Therefore, we require a more 
flexible and robust estimation for this duration analysis with an endogenous binary variable.  

Semiparametric estimation of this model is to approximate an unknown error term using 
Hermite polynomials. Following van der Klaauw and Koning (2003), the joint distribution of 
(𝜀𝜀1𝑖𝑖 , 𝜀𝜀2𝑖𝑖) takes the following semi-nonparametric (SNP) normal density:  

 
𝑓𝑓(𝜀𝜀1𝑖𝑖 , 𝜀𝜀2𝑖𝑖) =

1
𝑃𝑃�

��𝛼𝛼𝑗𝑗𝑗𝑗𝜀𝜀1𝑖𝑖
𝑗𝑗 𝜀𝜀2𝑖𝑖𝑘𝑘

𝐾𝐾

𝑘𝑘=0

𝐾𝐾

𝑗𝑗=0

�

2
1

2𝜋𝜋𝜎𝜎1𝜎𝜎2�1 − 𝜌𝜌2

× exp �−
1

2(1− 𝜌𝜌2) ��
𝜀𝜀1𝑖𝑖
𝜎𝜎1
�
2
− 2𝜌𝜌

𝜀𝜀1𝑖𝑖
𝜎𝜎1
𝜀𝜀2𝑖𝑖
𝜎𝜎2

+ �
𝜀𝜀2𝑖𝑖
𝜎𝜎2
�
2
�� ≡

𝑓𝑓∗

𝑃𝑃
, 

(11)  

where 𝑃𝑃 = ∬ 𝑓𝑓∗d𝜀𝜀1𝑖𝑖d𝜀𝜀2𝑖𝑖
∞
−∞  ensures integration to 1 by scaling the density, 𝜎𝜎1 and 𝜌𝜌 are standard 

deviation and correlation parameters, and 𝛼𝛼𝑗𝑗𝑗𝑗 are parameters to be estimated. To identify the 
parameters, we set 𝛼𝛼00 = 1 and 𝜎𝜎2 = 1.1  

This model includes double integrals but has no analytical solution. Therefore, we evaluate the 
likelihood using a numerical integral. Fortunately, the log-likelihood results in the following single 
integral: 

 ln 𝐿𝐿 = �(1− 𝑐𝑐𝑖𝑖) ln �
Ψ(𝜀𝜀1𝑖𝑖)
𝑃𝑃

1
𝜎𝜎1
𝜙𝜙 �

𝜀𝜀1𝑖𝑖
𝜎𝜎1
�� +

𝑁𝑁

𝑖𝑖=1

𝑐𝑐𝑖𝑖 ln ��
Ψ(𝜀𝜀1𝑖𝑖)
𝑃𝑃

1
𝜎𝜎1
𝜙𝜙 �

𝜀𝜀1𝑖𝑖
𝜎𝜎1
�d𝜀𝜀1𝑖𝑖

∞

𝜀𝜀1𝑖𝑖
�, (12)  

where 𝑐𝑐𝑖𝑖  is a censoring indicator (𝑐𝑐𝑖𝑖 = 1  if the observation is censored and 𝑐𝑐𝑖𝑖 = 0  if the 
observation is uncensored) and 𝜀𝜀1𝑖𝑖 ≡ ln𝑡𝑡𝑖𝑖 − 𝛽𝛽𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝛽𝛽1. The term 𝜙𝜙(∙) is the probability density 
function of the standard normal distribution; Ψ(∙) contains a Hermite series and depends only on 
𝜀𝜀1𝑖𝑖,

2 which takes the following form:  

 Ψ(𝜀𝜀1𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧� 𝜓𝜓(𝜀𝜀2𝑖𝑖|𝜀𝜀1𝑖𝑖)d𝜀𝜀2𝑖𝑖

−𝑧𝑧𝑖𝑖
′𝛽𝛽2

−∞
    if    𝑑𝑑𝑖𝑖 = 0

� 𝜓𝜓(𝜀𝜀2𝑖𝑖|𝜀𝜀1𝑖𝑖)d𝜀𝜀2𝑖𝑖
∞

−𝑧𝑧𝑖𝑖
′𝛽𝛽2

    if    𝑑𝑑𝑖𝑖 = 1
. (13)  

After some algebraic computation, Equation (13) has an analytical solution.  
Although we avoid double integrals, ln𝐿𝐿 remains a single integral over �𝜀𝜀1𝑖𝑖 ,∞� in a censored 

part. If the integral is distributed over [−∞,∞], the log-likelihood is easily evaluated by applying 
the Gauss-Hermite (GH) quadrature. In this censored part, we can calculate the log-likelihood 
function using 𝜀𝜀𝑠𝑠 > 𝜀𝜀1𝑖𝑖 , where 𝜀𝜀𝑠𝑠 is the evaluation point of the GH quadrature. Since 𝜀𝜀1𝑖𝑖 contains 
the vector 𝛽𝛽1 (or 𝛽𝛽𝑑𝑑), a small change in the value of 𝛽𝛽1 (or 𝛽𝛽𝑑𝑑) does not change the likelihood, 
and thus, the performance of the GH quadrature is low. When we use the simulated maximum 
likelihood (SML) method instead of the GH quadrature, this problem still holds. It is necessary to 
use many evaluation points to approximate the integral accurately. Hence, it takes much time to 
calculate the accurate likelihood. To maximize the log-likelihood, it is not realistic to use the GH 
quadrature or SML.  

This paper applies the GHK simulator, due to Geweke (1992), Hajivassiliou and McFadden 

1 This model has another restriction: 𝐸𝐸[𝜀𝜀1𝑖𝑖] = 𝐸𝐸[𝜀𝜀2𝑖𝑖] = 0. The restriction is equivalent to setting 
the constant term equal to that in the parametric model.  
2 For further details, see Masuhara (2008).  
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(1994), and Keane (1994) to evaluate the log-likelihood in the censored part. 3 The GHK simulator 
is described as follows:  
 
1)  Generate the value of 𝜀𝜀1𝑠𝑠 from a truncated normal distribution at 𝜀𝜀1𝑖𝑖 as follows: (a) generate 

a standard uniform random variable 𝑢𝑢𝑠𝑠 ; (b) calculate 𝜀𝜀1𝑠𝑠 = 𝜎𝜎1Φ−1�Φ�𝜀𝜀1𝑖𝑖/𝜎𝜎1�+ 𝑢𝑢𝑠𝑠�1 −
Φ�𝜀𝜀1𝑖𝑖/𝜎𝜎1��� where Φ(∙) is a cumulative distribution of the standard normal distribution.  

2)  Calculate �1 −Φ�𝜀𝜀1𝑖𝑖/𝜎𝜎1��Ψ(𝜀𝜀1𝑠𝑠)/𝑃𝑃.  
3)  Repeat the steps 1 to 2 𝑆𝑆  times, and calculate the simulated probability: �1 −Φ�𝜀𝜀1𝑖𝑖/

𝜎𝜎1��∑ Ψ(𝜀𝜀1𝑠𝑠)/(𝑃𝑃 × 𝑆𝑆)𝑆𝑆
𝑠𝑠=1 . 

 
Although the random variable 𝜀𝜀1𝑠𝑠 should be generated from a censored normal distribution, the 
GHK simulator generates the truncated normal distribution. Therefore, it is necessary to use the 
weight �1 −Φ�𝜀𝜀1𝑖𝑖/𝜎𝜎1�� for Ψ(𝜀𝜀1𝑠𝑠)/𝑃𝑃. Unlike the GH quadrature or SML, the GHK simulator 
calculates the log-likelihood on fixed evaluation points.  

Moreover, this paper uses Halton (1960) sequences for a standard uniform random variable 𝑢𝑢𝑠𝑠. 
The SML method requires a large number of pseudo-random draws 𝑢𝑢𝑠𝑠 to achieve a suitable level of 
precision. However, it is computationally expensive to increase the number of simulation draws in 
order to reduce the simulation error to acceptable levels. Quasi-random numbers like the Halton 
sequence, which use non-random points within the domain of integration, are another method to 
evaluate the simulated likelihood. In general, the convergence rate for the quasi-random numbers is 
faster than that for the pseudo-random numbers. Bhat (2001) and Train (2003) report that the Halton 
sequences are more uniformly distributed than pseudo-random numbers.  

Halton sequences are constructed as follows: consider the prime number 2. Take the unit 
interval (0, 1) and divide it into two parts. The dividing point 1/2 is the first element of the 
Halton sequence. Next, divide each part into two parts. The dividing points, 1/4 and 3/4, are the 
next two elements of the sequence. Divide each of the four parts into two parts each. The dividing 
points are 1/8, 5/8, 3/8, and 7/8 (which are 1/8 added to zero and the previous numbers: 0, 
1/2, 1/4, and 3/4). Continue this process to obtain the Halton sequences based on the prime 
number 2 (1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, …). Similar sequences are defined for other 
prime numbers, such as 3 (1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, …). In order to obtain 
corresponding standard normal points from each Halton draw, we take the inverse standard normal 
distribution transformation: Φ−1(1/2) = 0 , Φ−1(1/4) = −0.67 , Φ−1(3/4) = 0.67, … , where 
Φ−1 is an inverse of the cumulative density function of the standard normal.   
 
 
4. Application to Hospital Stays  
 
We present the results of the simplified application of the model, using a subsample of 1,257 
observations from the 1996 Medical Expenditure Panel Survey (MEPS), originally employed by 
Prieger (2002). We regard the variable length of all hospitalizations (HOSPDUR) as duration and 
employ the data with HOSPDUR> 0  on 1,257 out of the original 14,956 observations to 
concentrate on the duration analysis. The explanatory variables are as follows: (1) health status 
measures --- the number of self-reported medical conditions (CONDN), the number of conditions on 
the priority list (PROLIST), a dummy for self-perceived excellent health (EXCLHLTH), 
self-perceived poor health (POORHLTH),and assistance for the physical limitations in daily living 
(ADLHELP); (2) socioeconomic variables --- exact age (AGE), years of education (EDUC), a 
dummy for south residents (SOUTH), midwestern residents (MIDWEST), western residents 
(WEST), African-Americans (BLACK), Hispanic (HISPANIC), female (FEMALE), marital status 
(MARRIED), employment status (EMPLOYED), health insurance offered from the current main job 

3 Train (2003) explains the simplified version of the GHK simulator and applies this 
simulator to mixed logit models.  
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(INSCUR), and health insurance offered through a job other than the current main job (INSPREV).  
The entire description of the variables and summary statistics is obtained by Table 3.  
 

<<Insert Table 3>> 
 

Many empirical works demonstrate that an individual's insurance choice is endogenous when 
health outcomes are considered to be a dependent variable. We are interested in how the individual's 
insurance choice affects the duration of hospital stays (HOSPDUR). Following Prieger (2002), this 
chapter uses a single insurance indicator (INSURED), which includes all types of insurance such as 
private insurance, medicare, medicaid, and HMO; this is done so as to avoid the difficulties involved 
in estimating multivariate probit models of high order. Although, when analyzing duration data, 
censored data play an important role, our data do not have censored data. Hence, we compare the 
coefficients between (1) non-censored data and (2) artificial censored data at 𝑡𝑡 = 30 (the proportion 
of right-censored samples is 4.14%). 

Table 4 and 5 show the estimated results of parametric and SNP duration analysis with 𝐾𝐾 = 2.4 
The parameter values of the endogenous variable (INSURED) are statistically significant at the 1% 
level; however, the values differ among the four models: 0.676 in the non-censored parametric 
model, 0.986 in the non-censored SNP model with 𝐾𝐾 = 2, 0.713 in the censored parametric model, 
and 1.037 in the censored SNP model with 𝐾𝐾 = 2. This means that the any type of insurance choice 
increases the length of hospital stays by 96.696% in the non-censored parametric model, 168.168% 
in the non-censored SNP model with 𝐾𝐾 = 2, 104.010% in the censored parametric model, and 
182.074% in the censored SNP model with 𝐾𝐾 = 2.5 Compared with the parametric models, the 
increase of hospital stays in the two SNP models is large, especially in the case of non-censored data. 
Although there is the difference between the INSURED of the censored and non-censored 
parametric models, the values of INSURED in the two SNP models resemble each other.  
 

<<Insert Table 4>> 
 

<<Insert Table 5>> 
 

Figure 1 graphs the estimated densities of the three models using the 5% significant coefficients. 
We find that the semiparametric model with $K=2$ is a twin-peak distribution and that the contour 
lines differ from the usual ellipsoids of the bivariate normal density. 
 

<<Insert Figure 1>> 
 
5. Conclusion 
 
This paper proposes a new semiparametric duration model with an endogenous binary variable and 
censored data that generalizes bivariate correlated unobserved heterogeneity using Hermite 
polynomials. When applied to the duration of hospital stays of the MEPS data, the estimated results 
of both the non-censored and artificial censored SNP models show a good performance. The 
absolute values of the endogenous binary regressor coefficients of the semiparametric models are 
larger than that of the parametric models, if the data are censored or not. This introduces the 
interpretation of the binary endogenous variable, that is, the individual's insurance choice variable. 
The parametric model underestimates the effect of the individual's insurance choice in our example. 
The difference of the estimated endogenous coefficients of both the two models is smaller than those 
of the parametric models. This means that, if the data are censored, the parametric model have a 
large inconsistency. Moreover, the estimated densities of the semiparametric models have twin peak 

4 Since the log-likelihood ratio tests support the SNP model with 𝐾𝐾 = 2, we omit the results of the 
SNP model with 𝐾𝐾 = 1.  
5 In the case of the artificial censored data at 𝑡𝑡 = 15, the INSURED values of the parametric and 
SNP models are 0.861 and 1.074, respectively.  
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distribution.  
The semiparametric model proposed in this chapter has one major advantage of the flexibility 

of bivariate distributed heterogeneity. When the difference between the endogenous binary variable's 
coefficients of the parametric and semiparametric models is not negligible, it is useful to generalize 
bivariate heterogeneity using Hermite polynomials.  
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Table 1: Consistency in Linear and Nonlinear Regression with Endogenous Variables 
 

 
 
  

dependent variable endogenous variable Two-stage
(i) continuous continuous consistent
(ii) continuous discrete, censored, or truncated consistent
(iii) discrete, censored, or truncated continuous consistent
(iv) discrete, censored, or truncated discrete, censored, or truncated inconsistent
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Table2: Monte Carlo Results 
 

 
  

Truth N =1,000 N =2,000 N =1,000 N =2,000 N =1,000 N =2,000

β 11 0.5 -0.003 -0.011 0.006 -0.008 0.007 -0.001 
(0.086) (0.064) (0.057) (0.051) (0.041) (0.033)

β 12 0.5 -0.005 0.001 -0.010 0.019 -0.016 0.014 
(0.237) (0.154) (0.245) (0.180) (0.242) (0.194)

Truth N =1,000 N =2,000 N =1,000 N =2,000 N =1,000 N =2,000

β 11 0.5 0.012 -0.014 0.009 -0.001 0.010 0.005 
(0.307) (0.216) (0.231) (0.170) (0.123) (0.094)

β 12 0.5 -0.030 0.008 -0.007 -0.002 0.013 0.005 
(0.494) (0.331) (0.436) (0.304) (0.316) (0.226)

N =1,000 N =2,000 N =1,000 N =2,000 N =1,000 N =2,000

β 11 0.5 0.056 0.011 0.133 0.114 0.362 0.351 
(0.348) (0.240) (0.292) (0.220) (0.178) (0.142)

β 12 0.5 -0.123 -0.049 -0.274 -0.250 -0.792 -0.787 
(0.581) (0.385) (0.574) (0.416) (0.444) (0.343)

ρ  = 0.3 ρ  = 0.6 ρ  = 0.9

FIML

Two-stage

Notes: Figures without parentheses are mean bias (BIAS) values. Root mean squared errors (RMSE) appear
in parentheses. Two-stage and FIML are the two-stage estimation and full information MLE, respectively.

(a) Monte Carlo Results of Probit Models with an Endogenous Continuous Variable

ρ  = 0.3 ρ  = 0.6 ρ  = 0.9

Two-stage

(b) Monte Carlo Results of Probit Models with an Endogenous Binary Variable
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Table 3: Hospital Stays: Variable Description 
 

 
 
  

Variable Definition Mean Std. Dev. Min. Max.
HOSPDUR Length of all hospitalizations 7.105 10.958 0.5 99
HOSPNUM Number of hospitals stays 1.403 0.836 1 9
PRIVINS 1 = covered by private insurance of any typec 0.637 0.481 0 1
MEDICARE 1 = currently covered by Medicare 0.353 0.478 0 1
MEDICAID 1 = currently covered by Medicaid 0.177 0.382 0 1
HMO 1 = enrolled in a HMO 0.369 0.483 0 1
CONDN Number of self-reported medical conditions 2.970 2.696 0 22
PRIOLIST Number of conditions on the priority list 1.194 1.551 0 11
EXCLHLTH 1 = individual reports health to be 'excellent' 0.164 0.370 0 1
POORHLTH 1 = individual reports health to be 'poor' 0.121 0.326 0 1
ADLHELP 1 = requires assistance with daily living tasks 0.149 0.356 0 1
MIDWEST Regional indicator (EAST is the excluded dummy) 0.238 0.426 0 1
SOUTH Regional indicator (EAST is the excluded dummy) 0.363 0.481 0 1
WEST Regional indicator (EAST is the excluded dummy) 0.203 0.402 0 1
FEMALE 1 = female 0.652 0.476 0 1
AGE Age 51.080 20.193 18 90
BLACK 1 = black (not Hispanic) 0.126 0.332 0 1
HISPANIC 1 = of Hispanic ethnicity 0.173 0.378 0 1
EDUC Years of education 11.691 3.318 0 17
MARRIED Marital status: 1 = currently married 0.563 0.496 0 1
EMPLOYED Employment status: 1 = currently employed 0.425 0.495 0 1
PRIVMCAR 1 = covered by private insurance and Medicare 0.201 0.401 0 1
INSCUR Health insurance offered from the current main job 0.284 0.451 0 1
INSPREV Health insurance offered through a job 0.219 0.414 0 1

other than the current main job
INSURED Insured 0.908 0.290 0 1
Data: MEPS 1996.
The data are downloadable from the Journal of Applied Econometrics Data Archive (http://econ.queensu.ca/jae/).
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Table 4: Estimated Results of Hospital Stays (Selection Equation) 
 

 
 
  

selection equation
INSCUR 1.283 (0.173) 1.525 (0.198) 1.276 (0.172) 1.403 (0.176)
INSPREV 0.328 (0.183) 0.292 (0.172) 0.313 (0.182) 0.259 (0.162)
CONDN 0.017 (0.033) 0.013 (0.037) 0.017 (0.033) 0.020 (0.033)
PRIOLIST 0.091 (0.069) 0.110 (0.072) 0.089 (0.069) 0.087 (0.067)
EXCLHLTH 0.454 (0.171) 0.535 (0.182) 0.448 (0.170) 0.480 (0.166)
POORHLTH 0.052 (0.193) 0.092 (0.200) 0.056 (0.193) 0.106 (0.186)
ADLHELP 0.376 (0.227) 0.334 (0.212) 0.382 (0.226) 0.336 (0.202)
MIDWEST -0.438 (0.204) -0.437 (0.204) -0.444 (0.203) -0.436 (0.190)
SOUTH -0.741 (0.181) -0.846 (0.193) -0.743 (0.180) -0.807 (0.176)
WEST -0.307 (0.202) -0.256 (0.206) -0.311 (0.201) -0.252 (0.191)
FEMALE 0.130 (0.131) 0.096 (0.132) 0.128 (0.130) 0.078 (0.123)
AGE 0.021 (0.004) 0.024 (0.004) 0.021 (0.004) 0.021 (0.004)
BLACK 0.050 (0.178) 0.083 (0.197) 0.048 (0.178) 0.059 (0.180)
HISPANIC -0.188 (0.141) -0.183 (0.158) -0.190 (0.140) -0.199 (0.144)
EDUC 0.040 (0.018) 0.047 (0.020) 0.040 (0.018) 0.041 (0.018)
MARRIED -0.022 (0.118) -0.037 (0.127) -0.022 (0.118) -0.057 (0.117)
EMPLOYED -0.494 (0.139) -0.605 (0.174) -0.495 (0.138) -0.567 (0.152)
CONSTANT 0.037 (0.350) 0.037 - 0.045 (0.349) 0.045 -

α 01 -0.148 (0.059) -0.177 (0.039)
α 02 2.857 (0.055) 1.963 (0.034)
α 10 -0.135 (0.056) -0.418 (0.032)
α 11 4.361 (0.051) 3.047 (0.029)
α 12 -0.894 (0.018) -0.440 (0.011)
α 20 1.843 (0.047) 1.267 (0.024)
α 21 -0.802 (0.020) -0.384 (0.011)
α 22 0.004 (0.009) -0.010 (0.005)

log-likelihood -2,076.447
Notes: SNP denotes the semi-nonparametric duration model; standard errors are in parentheses.

non-censored data

-2,063.234

parametric SNP (K =2)SNP (K =2)

-2,081.017 -2,068.231 

artificial censored data at t=30
parametric
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Table 5: Estimated Results of Hospital Stays (Duration Equation) 
 

 
 
  

INSURED 0.676 (0.097) 0.986 (0.074) 0.713 (0.096) 1.037 (0.076)
CONDN -0.013 (0.016) -0.014 (0.016) -0.015 (0.016) -0.014 (0.015)
PRIOLIST 0.056 (0.029) 0.054 (0.028) 0.056 (0.029) 0.053 (0.028)
EXCLHLTH -0.144 (0.081) -0.155 (0.076) -0.148 (0.081) -0.162 (0.077)
POORHLTH 0.330 (0.096) 0.329 (0.093) 0.328 (0.097) 0.330 (0.093)
ADLHELP 0.315 (0.091) 0.323 (0.088) 0.335 (0.092) 0.323 (0.089)
MIDWEST -0.041 (0.088) -0.009 (0.084) -0.043 (0.088) 0.005 (0.086)
SOUTH 0.068 (0.082) 0.131 (0.078) 0.068 (0.082) 0.139 (0.079)
WEST -0.238 (0.092) -0.185 (0.088) -0.242 (0.092) -0.181 (0.089)
FEMALE -0.261 (0.063) -0.219 (0.060) -0.256 (0.063) -0.204 (0.061)
AGE 0.009 (0.002) 0.008 (0.002) 0.009 (0.002) 0.008 (0.002)
BLACK 0.221 (0.091) 0.225 (0.086) 0.225 (0.092) 0.239 (0.088)
HISPANIC 0.074 (0.084) 0.099 (0.078) 0.080 (0.084) 0.121 (0.079)
EDUC -0.018 (0.010) -0.015 (0.009) -0.017 (0.010) -0.014 (0.009)
MARRIED -0.134 (0.060) -0.120 (0.056) -0.133 (0.060) -0.111 (0.057)
EMPLOYED -0.186 (0.066) -0.163 (0.061) -0.191 (0.066) -0.163 (0.062)
CONSTANT 0.657 (0.198) 0.657 - 0.617 (0.198) 0.617 -
σ 1 1.032 (0.020) 0.913 (0.013) 1.034 (0.021) 1.038 (0.016)
ρ -0.473 (0.047) -0.776 (0.010) -0.491 (0.046) -0.817 (0.010)

non-censored data

Notes: SNP denotes the semi-nonparametric duration model; standard errors are in parentheses.

artificial censored data at t=30
parametric SNP (K =2) parametric SNP (K =2)

duration equation
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Figure 1: Estimated Densities of Heterogeneity 
 
 
(a) non-censored (parametric)   (b) artificial censored (parametric) 
 

 
 
 
(c) non-censored (𝐾𝐾 = 2)   (d) artificial censored (𝐾𝐾 = 2) 
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Table 1
dependent variable endogenous variable Two-stage

(i) continuous continuous consistent
(ii) continuous discrete, censored, or truncated consistent
(iii) discrete, censored, or truncated continuous consistent
(iv) discrete, censored, or truncated discrete, censored, or truncated inconsistent



Table 2

Truth N =1,000 N =2,000 N =1,000 N =2,000 N =1,000 N =2,000

β 11 0.5 -0.003 -0.011 0.006 -0.008 0.007 -0.001 
(0.086) (0.064) (0.057) (0.051) (0.041) (0.033)

β 12 0.5 -0.005 0.001 -0.010 0.019 -0.016 0.014 
(0.237) (0.154) (0.245) (0.180) (0.242) (0.194)

Truth N =1,000 N =2,000 N =1,000 N =2,000 N =1,000 N =2,000

β 11 0.5 0.012 -0.014 0.009 -0.001 0.010 0.005 
(0.307) (0.216) (0.231) (0.170) (0.123) (0.094)

β 12 0.5 -0.030 0.008 -0.007 -0.002 0.013 0.005 
(0.494) (0.331) (0.436) (0.304) (0.316) (0.226)

N =1,000 N =2,000 N =1,000 N =2,000 N =1,000 N =2,000

β 11 0.5 0.056 0.011 0.133 0.114 0.362 0.351 
(0.348) (0.240) (0.292) (0.220) (0.178) (0.142)

β 12 0.5 -0.123 -0.049 -0.274 -0.250 -0.792 -0.787 
(0.581) (0.385) (0.574) (0.416) (0.444) (0.343)

ρ  = 0.3 ρ  = 0.6 ρ  = 0.9

FIML

Two-stage

Notes: Figures without parentheses are mean bias (BIAS) values. Root mean squared errors (RMSE)
appear

(a) Monte Carlo Results of Probit Models with an Endogenous Continuous Variable

ρ  = 0.3 ρ  = 0.6 ρ  = 0.9

Two-stage

(b) Monte Carlo Results of Probit Models with an Endogenous Binary Variable



Table 3 MEPS Data: Variable Description

Variable Definition Mean Std. Dev. Min. Max.
HOSPDUR Length of all hospitalizations 7.105 10.958 0.5 99
HOSPNUM Number of hospitals stays 1.403 0.836 1 9
PRIVINS 1 = covered by private insurance of any typec 0.637 0.481 0 1
MEDICARE 1 = currently covered by Medicare 0.353 0.478 0 1
MEDICAID 1 = currently covered by Medicaid 0.177 0.382 0 1
HMO 1 = enrolled in a HMO 0.369 0.483 0 1
CONDN Number of self-reported medical conditions 2.970 2.696 0 22
PRIOLIST Number of conditions on the priority list 1.194 1.551 0 11
EXCLHLTH 1 = individual reports health to be 'excellent' 0.164 0.370 0 1
POORHLTH 1 = individual reports health to be 'poor' 0.121 0.326 0 1
ADLHELP 1 = requires assistance with daily living tasks 0.149 0.356 0 1
MIDWEST Regional indicator (EAST is the excluded dum 0.238 0.426 0 1
SOUTH Regional indicator (EAST is the excluded dum 0.363 0.481 0 1
WEST Regional indicator (EAST is the excluded dum 0.203 0.402 0 1
FEMALE 1 = female 0.652 0.476 0 1
AGE Age 51.080 20.193 18 90
BLACK 1 = black (not Hispanic) 0.126 0.332 0 1
HISPANIC 1 = of Hispanic ethnicity 0.173 0.378 0 1
EDUC Years of education 11.691 3.318 0 17
MARRIED Marital status: 1 = currently married 0.563 0.496 0 1
EMPLOYED Employment status: 1 = currently employed 0.425 0.495 0 1
PRIVMCAR 1 = covered by private insurance and Medicare 0.201 0.401 0 1
INSCUR Health insurance offered from the current main 0.284 0.451 0 1
INSPREV Health insurance offered through a job 0.219 0.414 0 1

other than the current main job
INSURED Insured 0.908 0.290 0 1

CENSOR 0.041 0.199 0 1
HOSPDUR2 6.373 7.762 0.5 31
HOSPSTAY 1 = individual had hospital stays 1.000 ----- 1 1

Data: MEPS 1996.
The data are downloadable from the Journal of Applied Econometrics Data Archive



Table 4

INSURED 0.676 (0.097) 0.986 (0.074) 0.713 (0.096) 1.037 (0.076)
CONDN -0.013 (0.016) -0.014 (0.016) -0.015 (0.016) -0.014 (0.015)
PRIOLIST 0.056 (0.029) 0.054 (0.028) 0.056 (0.029) 0.053 (0.028)
EXCLHLTH -0.144 (0.081) -0.155 (0.076) -0.148 (0.081) -0.162 (0.077)
POORHLTH 0.330 (0.096) 0.329 (0.093) 0.328 (0.097) 0.330 (0.093)
ADLHELP 0.315 (0.091) 0.323 (0.088) 0.335 (0.092) 0.323 (0.089)
MIDWEST -0.041 (0.088) -0.009 (0.084) -0.043 (0.088) 0.005 (0.086)
SOUTH 0.068 (0.082) 0.131 (0.078) 0.068 (0.082) 0.139 (0.079)
WEST -0.238 (0.092) -0.185 (0.088) -0.242 (0.092) -0.181 (0.089)
FEMALE -0.261 (0.063) -0.219 (0.060) -0.256 (0.063) -0.204 (0.061)
AGE 0.009 (0.002) 0.008 (0.002) 0.009 (0.002) 0.008 (0.002)
BLACK 0.221 (0.091) 0.225 (0.086) 0.225 (0.092) 0.239 (0.088)
HISPANIC 0.074 (0.084) 0.099 (0.078) 0.080 (0.084) 0.121 (0.079)
EDUC -0.018 (0.010) -0.015 (0.009) -0.017 (0.010) -0.014 (0.009)
MARRIED -0.134 (0.060) -0.120 (0.056) -0.133 (0.060) -0.111 (0.057)
EMPLOYED -0.186 (0.066) -0.163 (0.061) -0.191 (0.066) -0.163 (0.062)
CONSTANT 0.657 (0.198) 0.657 - 0.617 (0.198) 0.617 -
σ 1 1.032 (0.020) 0.913 (0.013) 1.034 (0.021) 1.038 (0.016)
ρ -0.473 (0.047) -0.776 (0.010) -0.491 (0.046) -0.817 (0.010)

non-censored data

Notes: SNP denotes the semi-nonparametric duration model; standard errors are in parentheses.

artificial censored data at t =30
parametric SNP (K =2) parametric SNP (K =2)

duration equation



Table 5

selection equation
INSCUR 1.283 (0.173) 1.525 (0.198) 1.276 (0.172) 1.403 (0.176)
INSPREV 0.328 (0.183) 0.292 (0.172) 0.313 (0.182) 0.259 (0.162)
CONDN 0.017 (0.033) 0.013 (0.037) 0.017 (0.033) 0.020 (0.033)
PRIOLIST 0.091 (0.069) 0.110 (0.072) 0.089 (0.069) 0.087 (0.067)
EXCLHLTH 0.454 (0.171) 0.535 (0.182) 0.448 (0.170) 0.480 (0.166)
POORHLTH 0.052 (0.193) 0.092 (0.200) 0.056 (0.193) 0.106 (0.186)
ADLHELP 0.376 (0.227) 0.334 (0.212) 0.382 (0.226) 0.336 (0.202)
MIDWEST -0.438 (0.204) -0.437 (0.204) -0.444 (0.203) -0.436 (0.190)
SOUTH -0.741 (0.181) -0.846 (0.193) -0.743 (0.180) -0.807 (0.176)
WEST -0.307 (0.202) -0.256 (0.206) -0.311 (0.201) -0.252 (0.191)
FEMALE 0.130 (0.131) 0.096 (0.132) 0.128 (0.130) 0.078 (0.123)
AGE 0.021 (0.004) 0.024 (0.004) 0.021 (0.004) 0.021 (0.004)
BLACK 0.050 (0.178) 0.083 (0.197) 0.048 (0.178) 0.059 (0.180)
HISPANIC -0.188 (0.141) -0.183 (0.158) -0.190 (0.140) -0.199 (0.144)
EDUC 0.040 (0.018) 0.047 (0.020) 0.040 (0.018) 0.041 (0.018)
MARRIED -0.022 (0.118) -0.037 (0.127) -0.022 (0.118) -0.057 (0.117)
EMPLOYED -0.494 (0.139) -0.605 (0.174) -0.495 (0.138) -0.567 (0.152)
CONSTANT 0.037 (0.350) 0.037 - 0.045 (0.349) 0.045 -

α 01 -0.148 (0.059) -0.177 (0.039)
α 02 2.857 (0.055) 1.963 (0.034)
α 10 -0.135 (0.056) -0.418 (0.032)
α 11 4.361 (0.051) 3.047 (0.029)
α 12 -0.894 (0.018) -0.440 (0.011)
α 20 1.843 (0.047) 1.267 (0.024)
α 21 -0.802 (0.020) -0.384 (0.011)
α 22 0.004 (0.009) -0.010 (0.005)

log-likelihood

parametric

-2,076.447
Notes: SNP denotes the semi-nonparametric duration model; standard errors are in parentheses.

non-censored data

-2,063.234

parametric SNP (K =2)SNP (K =2)

-2,081.017 -2,068.231 

artificial censored data at t =30


	Semiparametric duration analysis with an endogenous binary variable: An application to hospital stays
	1.  Introduction
	2. Endogenous Regressors in Nonlinear Econometric Models
	3. Semiparametric Duration Analysis with an Endogenous Binary Variable
	4. Application to Hospital Stays
	5. Conclusion
	References
	
	Table1
	Table2
	Table3
	Table4
	Table5


