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Abstract

Existing literature explains persistent inequality either by ongoing shocks to abilities
or preferences, or by a combination of technological indivisibilities, capital market im-
perfections and ad hoc assumptions concerning savings behavior. We focus on the role
of pecuniary externalities — driven by endogenous movements in relative prices — in
explaining both the emergence and persistence of long-run inequality. With imperfect
capital markets, it turns out that long-run inequality is inevitable, even if investments are
divisible, agents maximize dynastic utility, and there are no random shocks. However,
the divisibility of investment does matter in determining the multiplicity of steady states:
with perfect divisibility such multiplicity typically disappears. We subsequently charac-
terize efficient steady states, and study non-steady-state dynamics in a two occupation
context.
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1 Introduction

A central prediction of the neoclassical growth model is that the market mechanism
intrinsically promotes the convergence of incomes of different agents, families or countries,
so that historical inequality tends to vanish in the long run. Reformulations of this model
in the context of intergenerational mobility (Becker and Tomes [1979], Loury [1981] and
Mulligan [1997]) therefore rely on the presence of random factors (“luck”) in explaining
the persistence of inequality, despite the overall tendency towards convergence.

It is well known that the convergence proposition relies on (strict) convexity of feasible
sets at the individual level, implying diminishing returns to investment.1 In part, this
is a matter of technology. But in part it is a matter of relative prices, which inevitably
matter once the neoclassical model is extended to incorporate multiple forms of capital.
And such extensions are essential to incorporate issues central to income distribution
theory, such as occupational choice and human capital investments. Whether investment
continues to be characterized by diminishing returns is then no longer an assumption to
be conveniently invoked; it becomes endogenous to the model.

In the presence of multiple forms of capital, questions of convergence which involve
non-steady-state dynamics are intrinsically hard to analyze. One may therefore pose
the following more limited question: even if all agents (or families) were to start equal
initially and share the same utility function, must they all remain equal at every date in
the future (absent random shocks)? If not, there would be a natural tendency towards
divergence rather than convergence.

Clearly if (in equilibrium) individual feasible sets were to remain convex (and if
preferences are convex as well) then ex-ante equality must imply ex-post equality. In
fact, one can go further: if there are perfect capital markets, the observation above must
be true even if the returns to education are nonconvex. This is because perfect capital
markets effectively separate occupational choices from consumption choices: the former
would be based on maximization of net present value, and the latter on intertemporal
smoothing of consumption via borrowing and lending. People might select different
occupations, but market prices will cause their net returns to be equalized.

Now suppose we introduce capital market imperfections. For expositional ease rule
out any form of borrowing and lending. As always, occupational choices will be based on
the comparison of costs and returns from different options, with the difference that the
costs must be incurred up front. Notice that these costs and returns are endogenously
determined in the market, creating a fundamental pecuniary externality: occupational
choices of any individual must depend on the choices made by others. What are the
implications of this externality? If the marginal returns to educational investment con-
tinue to diminish with the magnitude of the investment, ex-ante equality must continue
to imply ex-post equality. Indeed, if this were the case an obvious extension of the con-
vergence argument in the neoclassical model would yield long-run equality even if there
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is inequality to begin with.
But will educational investments be subject to diminishing returns? If not, a pecu-

niary (non)convexity would arise endogenously. It is important to reiterate that while an
occupational choice is, by its very nature, nonconvex (if one cannot mix occupations), this
is of no intrinsic interest: what matters instead is whether the relation between financial
cost and returns of different occupations exhibits a nonconvexity. While this depends
on the fineness of occupational structure, it also depends fundamentally on endogenous
market prices.

Specifically, suppose the set of occupations is H, with occupation h involving a train-
ing cost x(h) and generating wage earnings w(h) later. Define a function W (x) with the
property that W (x(h)) = w(h), which represents the relation between cost and returns
from different occupational choices available. If the occupational structure is coarse,
there may not exist occupations with training cost corresponding to certain intermedi-
ate values of x: in those cases we may without loss of generality put w(x) equal to the
wage corresponding to the occupation with the highest training cost below x (with the
notion that the excess is disposed of). The function W (x) thus represents the relevant
“investment frontier” available to any given agent “in equilibrium”.

Clearly if there are only finitely many occupations W (x) will be flat over interme-
diate ranges and jump upwards discontinuously at those values of x that correspond to
the training costs of some occupation: hence it must necessarily be nonconvex. But the
significance of such nonconvexities would shrink as the occupational structure became
richer, providing agents with a large range of investment options. The relevant question
is: even as the occupational structure becomes sufficiently fine that for every x there
exists an occupation with training cost equal to x, will the W (x) function be charac-
terized by diminishing returns “in equilibrium”? If not, what are the implications of
such pecuniary nonconvexities for long-run inequality? This question motivates the first
theme of this paper.

We consider a model in which there are several dynasties of individuals, each dynasty
composed of an infinite number of generations. In each generation, individuals acquire
occupations, and consume a single final good. Capital markets are imperfect: parents
cannot borrow against their children’s earnings, and must bear the cost of training their
children for an occupation. Training may involve material resources as well as teachers
and other service-providers, and so may entail the hiring of people of different occupations
(at market wages). Therefore training costs — and certainly wages — are, in principle,
endogenous, and consequently so is the function W (x).

We prove the following result: every steady state of the economy must be character-
ized by ex-post inequality and zero occupational mobility, under very general conditions
(that there are at least two active occupations with distinct training costs). Hence no
matter whether families start out equal or unequal, if the economy converges to a steady
state, they must end up with persistently unequal consumption and utility.
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The logic is very straightforward. Altruistic parents deciding to train their children
for occupation h involving higher training cost than occupation h′ incur a higher sacrifice
of current consumption. They must be compensated for this by an assurance that their
children will obtain a higher net utility as a result of entering occupation h rather than
h′. Hence not only must the incomes earned by members of occupation h be higher than
those of occupation h′, the same must be true of their consumption levels as well (which
equal their incomes, less the cost they incur for training their children in turn).

This result is both simple and robust. It applies irrespective of the nature of the
credit market imperfection (all that is needed is that higher investments correspond to
higher current sacrifice of consumption), of the nature of intergenerational altruism that
motivates educational investment, or of the divisibility of possible levels of investment.
Families “trapped” in low income and consumption occupations will not be able to “es-
cape”, no matter how much they care about the welfare of their descendants, and no
matter how gradual and smooth possible paths of upward mobility may be. The market
mechanism thus has an inherent tendency to create persistent inequality, a conclusion
diametrically opposite to the predictions of the aggregative neoclassical model. In partic-
ular, market prices must necessarily create a pecuniary nonconvexity in the investment
frontier facing different households. This result extends and generalizes similar argu-
ments by Freeman [1996], Ljungqvist [1993] and Ray [1990].

Our second principal result concerns the uniqueness of steady states. Many papers in
the literature on dynamics of inequality with capital market imperfections have pointed
out the possibility of multiple steady states with varying levels of inequality and per
capita income (e.g., Banerjee and Newman [1993], Galor and Zeira [1993], Ljungqvist
[1993], Ray and Streufert [1993], followed by Bandopadhyay [1997], Freeman [1996], Mani
(2001), and Piketty [1997]). This creates the history-dependence of eventual inequality
and macroeconomic performance, and a new role for policy intervention (see, for instance,
the survey in Hoff and Stiglitz [2001]). A policy need not affect the set of steady state
outcomes, and in particular it need not be a continuing intervention. A judiciously chosen
temporary policy can tip initial conditions into the basin of attraction for a new steady
state, and therefore have a permanent effect.

We show that such multiplicity must rely on investment indivisibilities. If instead
the occupational structure is sufficiently rich (in the sense that corresponding to every
training cost x there exists an occupational choice which is selected by some families),
the steady state must be unique (under some weak conditions). This uniqueness at the
societal level coexists with chronic multiplicity at the individual level: the fortunes of a
single dynasty are fundamentally history-dependent in this model. Societal equilibrium
may require that there be occupants of various professional slots — winners and losers
— in certain proportions, and these proportions be invariant in the aggregate. On the
other hand, with a small number of occupations there may be history dependence at
both micro and macro levels. Thus occupational discreteness — while irrelevant to the
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evolution and persistence of inequality — does matter for multiplicity.
A third theme of this paper concerns the efficiency of long-run outcomes. A key

market — the credit market — is missing, so it stands to reason that steady states of our
model will typically be inefficient. Somewhat surprisingly, this is not always the case. We
provide a (nearly) complete characterization of those steady states which are efficient.
Inefficiency turns out to involve either general underinvestment (the rate of return on
education which exceeds the discount rate), or a misallocation of investment (where the
rates of return on investing in different occupations are not equalized). As a corollary of
this characterization, it turns out that for certain kinds of training technologies (where
training involves only material resources, or is recursive in terms of human capital inputs
needed) there is always an efficient steady state. Moreover, the unique steady state of
the economy with perfectly divisible investment is also efficient.

On the other hand, economies with a small number of occupations typically possess a
continuum of efficient steady states and a continuum of inefficient steady states. While
the steady states are mutually non-comparable under the Pareto-ranking, the inefficient
ones are associated with high inequality and the efficient with low inequality (since
underinvestment tends to occur when there is high inequality). Here there is a potential
for temporary policies to simultaneously reduce long-run inequality and raise per-capita
income.

Finally, we address the difficult question of non-steady-state dynamics. This is the
only point at which we need to simplify the model: we study an economy with only two
occupations. We establish the uniqueness of competitive equilibrium (given initial con-
ditions), and convergence to steady states from every initial condition. The comparative
dynamics of redistributive policy are subsequently explored in this context. This model
also helps provide an explicit and complete account of how ex-post inequality can emerge
from a situation of perfect ex-ante equality.

We end this introduction by placing our model in the context of existing litera-
ture. We have already explained the fundamental differences from a view of persistent
inequality as the outcome of ongoing random shocks. Indeed, we abstract from such
shocks altogether, and emphasize instead the pecuniary nonconvexities that inevitably
arise from the existence of occupational disparity. This is not motivated by considera-
tions of “what’s correct”, for clearly randomness in ability and incomes is pervasive and
an important source of inequality and mobility. Our purpose instead is to reconsider
the question whether the market mechanism intrinsically tends to generate or dissolve
inequality, a question most fruitfully addressed in a context sans uncertainty, as in the
original formulation of the neoclassical model by Solow [1956]. Moreover, uncertainty
may create the impression of mobility or ergodicity when — for all practical purposes —
there is none.2

To be sure, competitive versions of the neoclassical model can explain the coexistence
of multiple wealth distributions with a unique macroeconomic steady state outcome (see,
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e.g., Chatterjee [1994]).3 While this coexistence bears some superficial resemblance to
our result concerning steady state uniqueness with perfect divisibility of investments,
there is a fundamental difference. The fates of individual dynasties may be highly path-
dependent, but our model produces a unique occupational and consumption distribution
in the aggregate, in contrast to the indeterminacy of consumption and wealth inequality
in the competitive neoclassical model. Moreover, steady state inequality is inevitable
in our model, whereas the competitive neoclassical model is perfectly consistent with
perfect equality.

This last distinction is also true of much of the remaining literature on inequality
with capital market imperfections. For instance, long-run inequality is a possibility in the
models of Banerjee and Newman [1993], Galor and Zeira [1993], and Ray and Streufert
[1993], but so is perfect equality. In addition, this literature assumes the existence
of a small number of occupational or investment options (thus imposing technological
nonconvexities), and many of the models impose ad hoc assumptions on intertemporal
behavior.4 Thus, an additional contribution of the present exercise is to relax these
assumptions, in order to explain their role. Our analysis shows that neither assumption
is crucial to the result concerning the existence of persistent inequality. For instance,
inequality persists despite the attempts of poor parents to help their children escape
poverty, no matter how much parents care about the welfare of their descendants. And
it persists even if there are no indivisibilities in the investment options. Indeed, we
provide stronger results concerning the inevitability of inequality in the long run, owing
to the operation of pecuniary externalities. We show that indivisibilities matter instead
for the multiplicity or efficiency of steady states: in their absence our results imply
that there is no role for history dependence nor any scope for social policy that is not
fundamentally redistributive.

In summary then, our model incorporates a richer specification of occupational struc-
ture, examines the inevitability of inequality, provides connections between investment
divisibility and steady state uniqueness, characterizes steady states, and explores non-
steady-state dynamics in special cases. The methods here led to a more comprehensive
exploration of inequality on both positive and normative grounds.

In related work (Mookherjee and Ray [2000a]) we have examined analogous questions
concerning inequality persistence and history dependence in the context of a contracting
model. Similar to this paper, we show there that such phenomena can arise despite sav-
ings motivated by long term utility maximization, and a convex investment technology.
That paper differs by endogenously modeling the capital market imperfection in terms
of an underlying moral hazard problem, and abstracting from interactions across agents.
Instead pecuniary nonconvexities in the returns to investment arise endogenously under
particular allocations of bargaining power between contracting parties.

The paper is organized as follows. Section 2 introduces the model. Section 3 presents
results concerning inequality and immobility characteristic of every steady state. Then
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Section 4 discusses steady state multiplicity, Section 5 discusses efficiency, and then
Section 6 studies non-steady-state dynamics in a two occupation context. Finally, Section
7 concludes, while the Appendix gathers all proofs.

2 Model

2.1 Agents and Professions

There is a continuum of agents indexed by i on [0, 1]. Each agent lives for one period,
and has one child who inherits the same index. Thus the index actually refers to a
dynasty, with i at date t serving to label a member of generation t belonging to dynasty
i. Dynasties are linked by fully altruistic preferences as in Barro [1974], so we may
equivalently think of i as an infinitely lived individual.

Each individual enjoys the consumption of a single good c, with one-period utility u.5

We take u to be increasing, smooth and strictly concave. Given altruistic preferences, if
{cs} is an infinite sequence of consumptions, then generation t’s payoff is given by the
“tail sum” ∞∑

s=t

δs−tu(cs). (1)

where δ ∈ (0, 1) is a discount factor, assumed common to all agents.
There is some set H of professions which individuals in each generation select from.

Most cases of interest are accommodated by taking H to be some arbitrary compact
subset of the real line. A population distribution over professions is simply a measure λ
on H. We will be particularly interested in leading subcases in which H is finite or is an
interval. This allows for arbitrary richness in the set of professions.

2.2 Technology

The technology combines a production sector with an educational or training sector. The
consumption good is produced by workers of different professions, and inputs of the good
itself. Trained professionals are produced by teachers and workers from different profes-
sions, besides material input of the consumption good. The technology is represented by
means of a set T , which contains various combinations of the form:

z ≡ (λ, c, λ′),

where λ represents the input vector (a measure on H, the current population distribu-
tion), c is a real number representing net output of the consumption good, and λ′ is a
measure on H which denotes the supply of trained professionals (which forms the next
period’s population distribution).

7



Throughout the paper, we assume that T is a closed convex cone,6 that at least one
profession requires no training,7 and that owners of firms (in either producton or training
sectors) seek to maximize profits.

2.3 Prices and Behavior

Normalize the price of the consumption good to unity. Then two sets of prices are
relevant at each date. First, there are the returns to professions, which we denote by
the function w(h) describing the wage earned by a member of profession h, or more
compactly by w. Second, there are the training costs of acquiring professional skills
for different occupations, denoted by the function x(h) (more compactly by x). The
latter represent costs incurred by investing parents, and revenues earned by educational
institutions.

Given prices at any date t, the economy generates (input) demands for professions
(λt), supply (ct) of the final good and of trained professionals (λ′

t = λt+1) for the next
generation at period t + 1. Give wages wt and training costs xt at date t, profit maxi-
mization implies that (λt, ct, λt+1) must solve

max c+ xtλ
′ − wtλ (2)

subject to (λ, c, λ′) ∈ T .
Now turn to household responses. Given some sequence of prices {ws, xs}s≥t, a

generation t household i with current profession h(i) will choose a sequence {hs, cs}s≥t

to solve

max
∞∑
s=t

δsu(cs) (3)

subject to the constraints
ht = h(i) (4)

and
ws(hs) = cs + xs(hs+1) for all s ≥ t (5)

Because preferences are perfectly altruistic, there is no time inconsistency across gener-
ations, so we may as well restrict ourselves to the choices made by generation 0, with
initial “endowment” of professions given by {h0(i)}i∈[0,1], or equivalently, by the popu-
lation distribution λ0 on H. Denote by {ct(i), ht(i)} the consumption and professional
choices made at every date.

Observe that the optimization problem (3) formulated for an individual (or dynasty)
incorporates the simplest description of a missing market for the accumulation of human
capital. Generation t + 1’s human capital must be paid for by generation t; no loans
are possible. If preferences are strictly convex, this means that self-finance has different
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implications for people depending on their current economic status. Specifically, the
poor have a higher marginal cost of finance. For this reason most of our results extend
to alternative formulations of capital market imperfections, or nature of intergenerational
altruism, as explained further below.

2.4 Equilibrium

Given some initial distribution λ, an equilibrium is a collection {λt, ct, wt, xt} (with λ0 =
λ) such that:

[1] At each date t, (λt, ct, λt+1) solves (2), given the price sequence {wt, xt}.
[2] There exists {ht(i), ct(i)} (for i ∈ [0, 1] and t = 0, 1, 2, . . .) such that for all individuals
i, {ht(i), ct(i)}∞

t=0 solves (3) starting from h0(i), and such that markets clear at any date:

ct =
∫
[0,1]

ct(i)di (6)

and
λt(B) = Measure{i : ht(i) ∈ B} (7)

for every Borel subset of H.
A particular type of equilibrium is a steady state, one in which all prices and aggregate

quantities remain the same over time. Formally, a collection (λ, c, w, x) is a steady state
if there exists an equilibrium {λt, ct, wt, xt} with (λt, ct, wt, xt) = (λ, c, w, x) for all t.

2.5 Examples

The preceding model is general enough to incorporate several commonly studied models
as special cases.

[1] The Neoclassical (Ramsey) Model. The set H can be reinterpreted as different
possible levels of physical (rather than human) capital. The one good Ramsey model is
obtained when H is an interval of the real line and the production set takes the following
form: T = {(λ, c, λ′)|c = f(

∫
H hdλ)− ∫

H hdλ
′}, where f is a concave smooth production

function generating output which is divided between consumption and capital stock next
period. Here w(h) equals hf ′ and x(h) = h. This can be extended to heterogenous
capital goods.8

[2] Models of Skill Acquisition without Interaction. In the simplest models
that display a link between inequality and other features of economic development (e.g.,
the introductory model in Galor and Zeira [1993]), some exogenous setup cost has to
be paid to acquire a skilled profession. It is easy to mimic this setup by assuming a
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single final good, two professions: 1 (unskilled) and 2 (skilled), so that H = {1, 2}, some
constant cost x of acquiring the skill, and constant wage rates w(1) and w(2) to unskilled
and skilled labor respectively.9

[3] Models of Skill Acquisition with Interaction. More sophisticated models
(such as the extended version in Galor and Zeira [1993] as well as Banerjee and Newman
[1993], Ray and Streufert [1993], Bandyopadhyay [1997], Maoz and Moav [1999] and
others) display interaction across agents. One way of doing this is to suppose that the
returns to skilled and unskilled labor in the previous example depend on the aggregate
supplies of these two forms of labor.10

[4] Entrepreneurship. We need not interpret distinct professions represent different
grades of skill, but rather as different occupations. As in Banerjee and Newman [1993]
or Freeman [1996], we might conceive of one profession as standing for “worker”, the
other for “entrepreneur”. Postulate some fixed investment I that must be made to set
up a business: this is the relevant notion of ‘training cost’ for entrepreneurship. As in
example 3, this model creates a natural form of interaction: the returns to workers and
entrepreneurs respectively depend on the relative number of workers and entrpreneurs
in the economy. With a production function F (L) describing output produced by any
given entrepreneur from employing L workers, the workers return is F ′(λ(2)

λ(1)) and the en-

trepreneur’s return is F
(

λ(2)
λ(1)

)
−F ′

(
λ(2)
λ(1)

)
, where the number of workers per entrepreneur

in the economy is λ(2)
λ(1) .

[5] Endogenous Training Cost. These models can be extended to accommodate
endogenous training cost, as in the model of Ljungqvist [1993]. Let H = {1, 2}, where
1 stands for unskilled worker and 2 stands for skilled worker. Skilled workers (λ(2)) are
allocated between production (p(2)) and training sectors (r(2)), so λ(2) = p(2) + r(2).
There is a constant teacher-pupil ratio of α ∈ (0, 1), so r(2) = αλ′(2). Output of the
consumption good depends on unskiled and skilled workers allocated to the production
sector, as given by a production function F (λ(1), λ(2)−αλ′(2)). Here w(1) = F1, w(2) =
F2, x(1) = 0, x(2) = αw(2).

3 Persistent Inequality

3.1 Inequality at Steady States

Our first result states that even though a steady state is defined in terms of the sta-
tionarity of aggregates (such as the population distribution over professions, or the total
production of the consumption good), it also involves stationarity at the individual level.
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Notice that this result does not automatically follow from the definition of a steady state.
There is no reason why a steady state cannot involve a constant fraction of the popula-
tion in each profession, while at the same time there are individuals constantly moving
from one profession to another (as in the ergodic distribution of a Markov chain).

Proposition 1 (Zero Mobility in Steady State) Let (λ, c, w, x) be a steady state.
Then no positive measure of individuals will switch across distinct professions.

This “zero-mobility” result is based on a single-crossing property that stems from
the convexity of preferences and the absence of credit markets (i.e., the fact that parents
must pay for their children’s education). In steady state, the present value utility of a
generation currently occupying occupying occupation h and contemplating a permanent
deviation to occupation g is given by u (w(h)− x(g)) + δV (g) where V (g) is the present
(utility) value to the parent of moving the child to profession g. The strict concavity of
u implies that richer families must endure a smaller utility sacrifice in educating their
children, hence must be willing to invest more in education. Accordingly the children
of families occupying the richest occupation (which must also entail the highest training
costs) must be trained for the same occupation — otherwise this occupation would not
be filled at subsequent dates, contradicting the steady state assumption. When there
are a finite number of professions, the same argument applies then to the next richest
occupation, and so on down the line.

The no-switching property implies that the destiny of each family must be constant
over time in any steady state, and V (h) = u(w(h)−x(h))

1−δ for all h. It leads directly to
the conclusion concerning the necessity of inequality. Before this, we need the following
definitions.

Let (λ, c, w, x) be a steady state. Say that two professions h and h′ are distinct
(relative to this steady state) if they involve different training costs x(h) 
= x(h′). Note
a simple sufficient condition for two professions to be distinct in any equilibrium: if
training someone for occupation h requires more of every material good and every kind
of teacher than training someone for occupation h′ — as would be the case where one
of them requires more years of schooling than another — then irrespective of the precise
set of prices, occupation h will involve a higher training cost than h′. More generally,
with distinct training technologies for two professions, they will turn out to be distinct
generically, though we do not pursue the exact conditions required to make this claim
precise.

Proposition 2 (Inequality in Steady State) Suppose that two dynasties inhabit two
distinct professions in some steady state. Then they must enjoy different levels of con-
sumption (and utility) at every date.
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The reasoning is very simple. If h and h′ are distinct professions with x(h) > x(h′), it
must be the case that w(h) > w(h′) for any family to be induced to choose occupation h.
Moreover, it must be the case that the earnings of occupation h net of training cost must
also be higher: w(h)−x(h) > w(h′)−x(h′). Otherwise the parent selecting occupation h
for its child would be better off reducing the educational investment from x(h) to x(h′),
and letting all its descendants move to occupation h′ instead of h.

Proposition 2 states that inequality is an endemic feature of every steady state satisfy-
ing a minimal “diversity” criterion: two or more distinct professions should be inhabited.
This is a very weak requirement. For instance suppose that two professions are ordered
in terms of input requirements (of every kind), and are both essential in the production
of the consumption good (in the sense that without them the consumption good cannot
be produced). Then every steady state (with positive consumption in the economy) must
involve persistent inequality.

Endogenous market prices play an important role in generating and perpetuating this
inequality. If several distinct professions are needed for economic activity, the behavior of
prices must guarantee that each of those professions are actually chosen. Since parents
pay for their children’s education, profession requiring a greater training cost entail
greater sacrifice for parents. So to induce them to undertake this sacrifice it must be
the case that their children are rendered better off in utility terms. Hence there must be
inequality in utility and consumption, not just in incomes.

The examples of Freeman [1996], Ljungqvist [1993] and Ray [1990] drive this point
home. In each case, there are two professions (skilled and unskilled labor in Ljungqvist
and Ray, managers and workers in Freeman). Consider the Ljungqvist-Ray scenario in
which there are two skills, and both types of labor enter as inputs in a concave production
function satisfying Inada conditions. Now suppose all individuals in a particular gener-
ation have equal wealth. Is it possible for all of them to make the same choices? The
answer is no. If all of them choose to leave their descendants unskilled, then the return to
skilled labor will become enormously high, encouraging some fraction of the population
to educate their children. Similarly, it is not possible for all parents to educate their chil-
dren, if unskilled labor is also necessary in production. Even if all agents were identical
to start with, they must sort into distinct occupations, owing to the interdependence of
decisions of different families.

To be sure, at this stage there are no implications for inequality. There is inequality of
(earned) incomes, but no utility differences as far as the original generation is concerned.
But utility differences do arise from the descendants onward. Suppose the economy
converges to a steady state (as verified in Section 6 below) in which both occupations are
occupied. By Proposition 2, such a steady state must display (utility and consumption)
inequality. This inequality is a fundamental implication of the price mechanism and does
not rely on stochastic shocks.11
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Clearly, the result depends on the assumption that two distinct professions prevail in a
steady state. As the discussion above makes clear, this assumption is really one about the
potential variation in relative prices, which in turn relies on the imperfect substitutability
of professions. The assumption may not apply in some situations, however. For instance,
the Ramsey model with concave investment technology at the level of each individual
household exhibits convergence to a unique steady state for each household. Then every
economy-wide steady state must involve the same “profession” for every household, and
Proposition 2 does not apply. However, once we allow a minimal degree of diversity of
occupations, the Proposition does apply, and the convergence conclusions of the Ramsey
model no longer hold.

The result extends to alternative formulations of capital market imperfections or
intergenerational altruism. All that is needed is that the marginal cost of finance is
higher for poorer households, which almost any reasonable model of imperfect capital
markets will satisfy. Or parents may have a ‘warm glow’ bequest motive, where they
care only about the size of their bequests (or educational investments), rather than their
implication for the well-being of their descendants. Irrespective of these details, the
crucial ‘single crossing’ property that underlies Propositions 1 and 2 will obtain: richer
households will have a greater willingness to invest in their children’s education, implying
both zero mobility and inequality in every steady state.12

4 Multiplicity

4.1 Multiple Steady States and Policy

Typically, there may be several steady-states. A profusion of multiplicity results may
be found in the literature (see, e.g., Banerjee and Newman [1993], Lundqvist [1993],
Galor and Zeira [1993], Ray and Streufert [1993], Mani [2001] and Piketty [1997]). In
these models, the same economic parameters are consistent with numerous steady state
outcomes, with varying degrees of inequality, output, unemployment, and productive
efficiency. Historical inequality can cause convergence to steady states with lower per
capita income, and hence can be viewed as a “cause” of underdevelopment. Indeed, the
multiplicity of long-run outcomes may simply reflect the possible multiplicity of initial
conditions; given initial conditions there may be a unique equilibrium and a unique
long-run outcome. It is also well known (see, for example, Hoff and Stiglitz [2001]) that
such multiplicity creates a distinct role for policy (such as a one-time land reform). By
changing initial conditions, the policy intervention may change the particular steady state
that forms the attractor for the process and thereby generate permanent effects; there
is no need to change the steady states themselves. Thus an exploration of multiplicity
is important, in the sense that it tells us what sort of shocks to policy interventions are
likely to have lasting impact.
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It will be useful to distinguish between two notions of multiplicity. Individual or
micro- multiplicity refers to the case where initial endowments or perturbations at the
level of a household significantly shapes the long-run outcome of that household. Con-
trast this with societal or macro-multiplicity, in which initial conditions significantly
affect the final destiny of the economy as a whole. The references cited at the start of
this section contain numerous instances of macro-multiplicity. These may or may not co-
exist with micro-multiplicity. For instance, the Galor and Zeira framework is an example
of both. In contrast, in the Piketty model, there is macro-multiplicity, but given a par-
ticular societal steady state, individual behavior does not depend on initial conditions:
there is no micro-multiplicity. Finally, theories such as those in Aghion and Bolton [1997]
and Loury [1981] are examples of situations in which there is no multiplicity of either
kind: there is a single ergodic distribution, and the members of each dynasty experience
(over time) all the outcomes in the support of that distribution.

In this section, we demonstrate that the extent of societal multiplicity depends on the
richness of the set of professions. In particular, if there is a small number of professions,
such multiplicity is endemic. If, on the other hand, there are numerous professions
with no “gaps” in their training costs, societal multiplicity disappears entirely. At the
same time the long-run outcomes for individual dynasties continue to be highly path-
dependent, so that micro-multiplicity persists.

Perhaps this is the starkest display of inequality: at the individual level, economic
destinies appear as whimsical outcomes which can be changed through one-time inter-
ventions. Yet, when the set of professions is rich, long-run outcomes cannot be simultane-
ously affected for a large group of people, by any temporary policy. Societal equilibrium
may require that there be occupants of various professional slots — winners and losers
— in certain proportions, and these proportions be invariant in the aggregate.

4.2 Exploring Multiplicity

4.2.1 Characterizing Steady States

Throughout this section, we shall suppose that every profession is occupied in steady
state.13 We call this the full-support postulate, and is satisfied if every occupation is
essential for producing the consumption good.14 An example of this is where the con-
sumption good is produced by a Cobb-Douglas production function. Alternatively, even
if some inputs may not be necessary in production of the consumption good, they will be
essential if they are necessary to train other occupations that are essential in production
of the consumption good.

The first necessary condition for a steady state (λ, c, w, x) is that (λ, c) must be
related to (w, x) via profit maximization; that is,

(λ, c, λ) ∈ argmax c+ xλ′ − wλ̃, subject to (λ̃, c, λ′) ∈ T . (8)
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Secondly, no individual must contemplate a “one-shot deviation” to another profession,
where (by the zero-mobility result and the full-occupation postulate) it may safely be
conjectured that the new profession will be adhered to by all descendants. That is, for
every individual at some occupation h and for every alternative occupation h′,

u (w(h)− x(h)) ≥ (1− δ)u
(
w(h)− x(h′)

)
+ δu

(
w(h′)− x(h′)

)
(9)

Indeed, by the one-shot deviation principle (for discounted optimization problems) and
the zero-mobility result, conditions (8) and (9) are necessary as well as sufficient to
characterize the set of steady states.

4.2.2 Two Professions

First study (8) and (9) for the case of two professions with exogenous training cost. Call
the professions “skilled” and “unskilled” (as in Ljungqvist [1993] or Ray [1990]). For
unskilled labor take the training cost to be zero. For skilled labor assume that there is a
exogenous training cost x, which is just the number of units of the consumption good used
as input into the training process. This implicitly assumes that training does not require
any labor inputs. Abusing notation slightly, let λ denote the fraction of the population
at any date that is skilled. If some well-behaved production function f (satisfying the
usual curvature and Inada end-point conditions) determines the wage to skill categories,
the skilled wage at that date will be given by ws(λ) ≡ f1(λ, 1 − λ), while the unskilled
wage will be given by wu(λ) ≡ f2(λ, 1− λ). where subscripts denote appropriate partial
derivatives.15 This yields the following simple characterization: a fraction λ of skilled
people is compatible with a steady state if and only if

u (ws(λ))− u (ws(λ)− x) ≤ δ

1− δ
[u (ws(λ)− x)− u (wu(λ))]

≤ u (wu(λ))− u (wu(λ)− x) (10)

The left hand side of (10) represents the utility sacrifice of a skilled parent (hereafter
denoted by κs(λ)) in educating its child, while the right hand side is the corresponding
sacrifice for an unskilled parent (denoted by κu(λ)). The term in the middle is the present
value benefit of all successive descendants being skilled rather than unskilled (which we
shall denote by b(λ)).

These benefit and sacrifice functions are illustrated in Figure 1. λ1 ∈ (0, 1) denotes
the skill intensity of the population at which the skill premium just disappears and the
wages of the skilled and unskilled are equal. So κs and κu intersect there. Likewise, λ2
is the point at which the wages of the skilled net of training equal those of the unskilled.
So b drops to zero there. These observations can be used in conjunction with (10) to
establish
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Figure 1: Education Costs and Benefits in Two-Profession Model

Proposition 3 There is a continuum of steady states in the two-profession model with
exogenous training costs, and total output net of training costs unambiguously rises as
the skill proportion in steady state increases.

Proposition 3 tells us that multiplicity — in the sense of a continuum of steady states
— is endemic for a small number of professions. While stated only for the two-profession
case, it is easy enough to extend the argument to any finite number of distinct professions.
However, as we shall see, the extent of variation across steady states may vanish when
the set of professions is ‘rich’.

Notice that the structure of the set of steady states may be complicated. In particular,
the set need not be connected. For instance, in Figure 1, the set of steady states is the
union of the two intervals (λ6, λ5) and (λ4, λ3).

The proposition also states that steady states are ordered not only in terms of skill
premium but also per capita income: a steady state with a higher λ and lower skill
premium corresponds to higher per capita income net of training costs. At the same
time, we must be careful not to confuse this finding with the Pareto-efficiency of a given
steady state. It is true that there may be steady states “above” it that yield higher per-
capita net output (and therefore higher per-capita utility) at every date. But this does
not imply that the first steady state is Pareto-dominated. We defer further discussion of
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efficiency to Section 5.
The societal multiplicity described in Proposition 3 is very much in line with existing

literature. We now turn to the question of how this multiplicity is modified when the
space of professions is ‘rich’, whence there are no longer any indivisibilities in the set of
investment options.

4.2.3 A Continuum of Professions

One way to conceptualize the notion of “richness” in a set of professions is by introducing
some notion of continuity in the cost of creating professional slots. To this end, assume
that there is a continuum of professions: H = [0, 1]. It can be shown (see the working
paper version of this paper, Mookherjee-Ray [2000b]) for a demonstration that the case
of the continuum can indeed by viewed as the limit of a sequence of economies with
progressively finer (but finite) occupational structures. So we simplify exposition by
considering directly the continuum case.

We impose the following restriction on the nature of the technology: there is a well
defined unit cost function for each category of professional to be trained. This requires
the following assumption.

[T.1] The set T is generated from a collection of individual production functions, one for
the consumption good, and one each for the training of a professional in every profession
h.

Thus for each professional category h, there is a well-defined production function g(µh, yh, h),
where µh is a measure on [0, 1] denoting inputs from different occupations, and yh

the input of the final good, into the training of professionals in profession h. For
the final good, the production function may simply be written as f(µ), describing
net output of the consumption good from distribution µ over different inputs in the
production sector. Hence T is generated by the collection of production functions
c +

∫
H y

hdh = f(µ) and λ′(h) = g(µh, yh, h), for h ∈ H, subject to the aggregate re-
source constraint µ+

∫
H µ

hdh ≤ λ. [T.1] implies the existence of a well-defined unit cost
function for training profession h:

ψ(w, h) ≡ inf
µ,y′{y

′ +
∫

H
w(h′)dµ(h′)}, subject to g(µ, y′, h) ≥ 1, (11)

In a competitive equilibrium, ψ(w, h) will equal the training cost function x(h), given
our assumption of constant returns to scale.

The next assumption we employ is

[T.2] The unit cost function ψ(w, h) is continuous in h for every measurable w.

[T.2] is typically satisfied when the technology is such that the required inputs to train
a professional in occupation h can be represented by a density function over various
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professional inputs, which varies continuously in h.16 The main use of this assumption is
to ensure that the training cost function x(h) in any steady state is continuous in occu-
pations, thereby implying that every steady state must involve a perfectly “connected”
range of investment options, in terms of financial cost and returns. One could just as eas-
ily replace this assumption by the weaker requirement that the range of possible training
costs is an interval, so that the set of investment options is perfectly divisible.17

Proposition 4 Suppose that the space of professions is [0, 1], that [T.1] and [T.2]
apply, and that that the full-support postulate holds. Then, provided that some steady
state exists with strictly positive wages for all occupations h, there is no other steady
state wage function. If, in addition, every production function (for the consumption
good, as well as for training in each profession) is strictly quasiconcave, then there is no
other steady state.

One aspect of this proposition is very intuitive, so let us dispose of it first. Suppose,
for the moment, that the cost of acquiring a profession is exogenously given by some
continuous function x(h) on [0, 1] (this is the case where no human capital input of any
sort is required in training). Then there can only be one steady state wage function
satisfying the full support property.

To see this, observe that the steady state condition (9) holds for every occupation
h, by the full-support assumption. Imagine testing this condition by moving a tiny
amount “up” or “down” in “profession space”. For such movements, the curvature
of the utility function can be (almost) neglected, and all that matters is whether the
discounted marginal return is greater or less than the marginal cost of this move. In
fact, to make sure that every point is a steady state choice (which is required by the
full-support postulate), the discounted marginal return must be exactly equal to the
marginal cost. This proves that for a tiny change ∆(h),

w(h+∆h)− w(h) � 1
δ
x(h+∆h)− x(h).

By piecing this finding over all professions, and recalling that x(0) must be zero, we
conclude that

w(h) =
1
δ
x(h) + w(0), (12)

where w(0) is just the wage for occupation 0 which does not require any training. Intu-
itively, there is no room for constructing local variations in the wage structure, owing to
the divisibility of the occupational ‘space’ that causes relevant local incentive constraints
to bind (i.e., across adjacent occupations). When this divisibility is absent, as with two
occupations, interior steady states are characterized by incentive constraints that do not
bind, which leaves room for local variations in the wage structure that do not disturb
the incentive constraints.
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To complete the argument of uniqueness (given x), note that there cannot be two
different values of w(0) that satisfy the steady state condition (8). For if there were, the
wage function associated with one must lie completely above the wage function associated
with the other. Moreover, by profit maximization, both these wage functions must be
compatible with some nontrivial profit-maximizing choice. But that cannot be, given
constant returns to scale and the fact that the price of the consumption good is always
normalized to unity.18

So far, we assumed that x is exogenously given, and showed that there is a single
w-function, given x. The less intuitive part of the proposition is that there is only one
w-function even when x is endogenously determined. This part of the argument makes
fundamental use of constant returns to scale, and the reader is invited to study the formal
proof for details.19

To see why the endogeneity of x does not jeopardize uniqueness, it may be best to
look at a couple of examples. Recall that the endogeneity of this function arises from
the possibility that it takes professionals to train professionals, so that x depends on
w. One elementary formulation is a fixed-coefficients “recursive” training technology:
workers proceed incrementally over successive training levels, and to increase one’s level
of training from h−dh to h requires a fixed proportion α(h) > 0 of teachers with training
level h: this costs α(h)w(h). This corresponds to the cost function

x(h) = ψ(w, h) =
∫ h

0
α(h′)w(h′)dh′ (13)

which is obviously continuous in h for every measurable w, so that [T.2] is satisfied.
Combining (13) with (12), we see that the wage profile in any limit steady state must
belong to the family

w(h) = w(0) exp[
∫ h

0

α(h′)
δ

dh′] (14)

Smooth steady states are thus pinned down entirely, except for their level, which cor-
respond to the wage w(0) of workers with no training at all. Note, however, that the
initial condition w(0) maps out a family of wage functions which is pointwise ordered.
By an argument given earlier, it follows that only one value of w(0) is consistent with
profit-maximization.

Or suppose, alternatively, that the training technology is Cobb-Douglas, with level-h
training technology described by the function

log s(h) =
∫ h

0
α(h′) log t(h′)dh′ (15)

where s(h) is the number of type h students turned out by a process that uses t(h′)
teachers of type h′ ∈ [0, h]. Here training an h-type requires teachers of all levels up to
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level h, but there is scope for substitutability among teachers of different levels. Higher
level teachers may be more effective, but also more expensive. Hence cost-effective train-
ing requires educational institutions to select an optimal teacher mix of different levels
given their wage profile, to minimize the cost of turning out each student. This cost
minimization exercise generates the training cost function

x(h) = ψ(w, h) = exp[
∫ h

0
α(h′) log

w(h′)
α(h′)

dh′] (16)

which once again satisfies [T.2]. Combining this with (12), we see that a limit steady
state wage profile must satisfy the differential equation

w′(h) =
1
δ
α(h) log

w(h)
α(h)

exp

[∫ h

0
α(h′) log

w(h′)
α(h′)

dh′
]

(17)

Once again, it is evident that the family of wage functions (determined up to a con-
stant of integration) is pointwise ordered, so only one of them is consistent with profit-
maximization in the final goods sector.

In both the examples, we have used what one might call a “recursive technology”,
in which the training of level-h individuals depend on indices labeled h or below. This
suggests that the set of professions may need to be ordered in some way for the result to
work. However, the proof of Proposition 4 is very general and does not rely at all on a
recursive technology.

To complete the discussion of Proposition 4, notice that once the steady state wage
function is pinned down, so is the unit cost function of acquiring a profession. Strict
quasiconcavity of all production functions then implies that input demands in all sec-
tors of the economy are uniquely determined, which determines the distribution across
occupations, and hence the entire steady state.20

5 Efficiency

Are steady states efficient in the sense of Pareto-optimality? A crucial market is missing,
so it would be no surprise if they failed to be efficient. It turns out, however, that the
answer is somewhat more complex, and is once again related to the richness of the set of
professions.

The concept of efficiency itself requires some discussion. We lay emphasis on the fact
that a “continuation value” from any date t is not just the tail utility for generation 0,
but is the utility of the generation born at date t. Therefore the universe of agents to
whom the Pareto criterion should be applied may be described by the collection of all
pairs (i, t), where i indexes the dynasty and t the particular member of that dynasty
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born at date t. Consequently, given some initial distribution λ0 over occupations, say
that a allocation {ct(i), λt} is efficient if, first, it is feasible:

(λt, ct, λt+1) ∈ T

for all dates t, where ct ≡ ∫
[0,1] ct(i)di, and if there is no other feasible allocation {c′t(i), λ′

t}
(with λ′

0 = λ0) such that for every date t:

∞∑
s=t

δs−tu(c′s(i)) ≥
∞∑
s=t

δs−tu(cs(i)),

with strict inequality holding over a set of agents of positive measure at some date.
Note that this notion of efficiency is actually a form of constrained Pareto efficiency,

where the ‘planner’ is constrained from making intertemporal transfers in exactly the
same way that market agents are.

Proposition 5 Suppose that a steady state (λ, x, w) has the property that

x(h)− x(h′) = a[w(h)− w(h′)] (18)

for some a ≥ δ, and for all occupations h and h′. Then such a steady state is Pareto-
efficient.

To interpret the proposition, note that x(h) − x(h′) is just the marginal cost of
moving up to a “better” profession (assuming that x(h) > x(h′) and accordingly that
w(h) > w(h′)). The familiar Pareto optimality condition states that the discounted
returns from doing so should equal this cost; that is

x(h)− x(h′) = δ[w(h)− w(h′)].

This condition is included in (18), but the latter is weaker. The incremental costs are
permitted to exceed the incremental wages without threat to Pareto-optimality. In this
sense “overinvestment” in human capital is not a source of Pareto-inefficiency. As elabo-
rated below, the reason is that future generations will lose if this apparent overinvestment
is eliminated. Note however that the condition also requires a balance between the ex-
tent of “overinvestment” in different occupations: the incremental costs for every pair
of professions be in excess of the discounted returns by exactly the same ratio (that
is, the a in (18) is independent of professions). This balance ensures the absence of
Pareto-improving reallocations across professions.

Next we provide a converse to the preceding result which shows that condition (18)
is necessary for Pareto efficiency as well for steady states satisfying the full support
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property. The converse is not exact. We will assume that the number of professions is
finite,21 and that the technology set satisfies:

[T.3] T has a smooth boundary, in the sense that every weakly efficient22 point of T has
a unique supporting price vector of the form (w, 1, x).

Proposition 6 Assume that H is finite and that [T.3] holds. Suppose that (18) fails at
some steady state with all professions occupied. Then the steady state cannot be Pareto-
efficient.

The proof of this Proposition (in the Appendix) provides some understanding for the
role of condition (18). This condition could either be violated by a general underinvest-
ment, whereby the rate of return is equalized across all occupations but this common rate
of return exceeds the discount rate δ. Or there may be a misallocation in investment,
with rates of return not equalized across occupations. In the former case, the planner
can construct a Pareto improvement by investing more somewhere in the occupation
distribution (redistributing weight towards some occupation h1 away from another h2
involving a lower training cost) for some generation t and returning to the previous
steady state from the following generation onwards. The deviation is constructed so as
to raise net output of consumption for generation t, while reducing it for the previous
generation t− 1, and leaving all generations from t+1 onwards unaffected. The changes
in consumption for generations t and t + 1 are distributed equally across all families.
Hence those in generation t will be better off, and all those in succeeding generations
are not affected at all by the variation. Finally, generation t− 1 must be better off since
the rate of return on education exceeds the rate δ at which they weigh the utility of the
next generation. A similar variation can be constructed in the case of a misallocation:
educational investments can be reallocated across occupations for some generation t so
as to yield a higher aggregate consumption for that generation, while leaving aggregate
consumption for future generations unchanged.

While underinvestment or misallocation is therefore not consistent with Pareto ef-
ficiency, overinvestment (in the sense of a common rate of return on all educational
investments which falls below the discount rate) is, as established by Proposition 5. The
reason for this asymmetry is that increases in aggregate consumption in the case of such
‘overinvestment’ require a reduced scale of investment, which makes future generations
worse off, and there is no way that current generations can compensate future genera-
tions for this change.23 Such ‘overinvestment’ reflects the constraints on intertemporal
transfers in this economy by means other than (nonnegative) human capital investments.

To apply the preceding characterization of efficient steady states, consider first the
continuum case discussed in Section 4.2.3 satisfies the conditions of Proposition 5; there-
fore the unique steady state in that case is Pareto-efficient. Indeed, it is Pareto-efficient
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Figure 2: The Pareto-Efficiency Threshold with Two Professions.

in a first-best (i.e., unconstrained) sense as well, since the rate of return on investment is
uniformly equal to the discount rate (i.e., it is not characterized by any overinvestment).

Next consider the two profession economy. It is easy to apply Propositions 5 and 6
to show that in the two-profession case, “high” inequality coexists with inefficiency. The
reason is intuitive: high inequality is consistent with underinvestment in education given
capital market imperfections. More precisely, we will show that the set of steady states,
indexed by the proportion of individuals in the skilled profession, is always partitioned
by a threshold proportion — call it λ∗ — which itself must belong to the interior of the
set of steady states. Steady states in which λ < λ∗ must be inefficient, while steady
states with λ ≥ λ∗ must be efficient (see Figure 2). This implies that a continuum of
efficient and inefficient steady states coexist in the case of two professions.

To see this, simply recall the condition (10) that characterizes a steady state in the
two-profession case:

u (ws(λ))− u (ws(λ)− x) ≤ δ

1− δ
[u (ws(λ)− x)− u (wu(λ))] ≤ u (wu(λ))− u (wu(λ)− x) (19)

Define λ∗ by the condition ws(λ) − wu(λ) = x/δ. Notice that by Propositions 5 and 6,

23



and the particular properties of the functions ws(λ) and wu(λ), a steady state proportion
λ is Pareto-efficient if and only if λ ≥ λ∗. So it only remains to show that λ∗ belongs
to the interior of the set of steady states. This is done by verifying that (19) is satisfied
with strict inequality when λ = λ∗.24

Indeed, this observation for the case of two professions extends in several directions,
though considerations of space preclude a full treatment here. For instance, with exoge-
nous training costs (or equivalently, for the case in which training requires only material
inputs), there always exists an efficient steady state. To see this, consider the follow-
ing class of wage functions: w(h) = 1

δx(h) + w(0), and treat w(0) — the wage of the
profession that requires no training — as a parameter for the moment. Under weak
conditions on the technology,25 w(0) can be chosen to ensure zero maximal profits in
the sector producing the consumption good. Once this is done, a steady state is easy
to construct.26 And exactly the same argument as in the two-profession case guarantees
that the intertemporal utility maximization conditions are met. A similar argument ex-
tends the result to the case of a “recursive” training technology, where professions can
be ordered in a way that the cost of training for any occupation h depends only on wages
of occupations ordered below h.

Summarizing, there is no scope for Pareto improving policies in the case of a contin-
uum of professions where our uniqueness results of the preceding Section apply. But there
may be scope for Pareto-improving policy in other contexts, e.g., where the occupational
structure exhibits indivisibilities. Nevertheless, even in such case — and despite the
missing credit market — an efficient steady state will exist in a large class of economies.

6 Dynamics

The discussion so far on the emergence of inequality (as opposed to its persistence) makes
an important assumption. It is that starting from any initial configuration, an economy
will indeed converge to a steady state. After all, Proposition 2 makes no claims regarding
persistent inequality when the economy fails to converge to a steady state.

Moreover, a satisfactory theory of the long-run role of historical inequality should
account for the dynamic process by which initial conditions determine long-run outcomes.
For instance even if there are many possible steady states, it is conceivable that only a
few of them are stable attractors, and others cannot be reached from a nontrivial set
of initial conditions. In that case the steady state analysis overstates the multiplicity
of long-run outcomes. And even if convergence can be established, the precise map
between initial conditions and eventual steady state reached, and the transitory process
is of interest in its own right (e.g., Does inequality tend to increase or decrease over time?
How fast is the convergence? What are the transitory and long term effects of one-shot
redistributions?)
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Figure 3: Dynamics in Two-Profession Model

To our knowledge, there is no general theorem that guarantees convergence in this
class of models.27 Competitive versions of the turnpike theorem are available (see Bewley
[1982], Coles [1985] or Yano [1984]) but do not apply here, as those arguments rely on the
equivalence between competitive equilibria and full Pareto-optimality. Such equivalence
does not obtain in our setting because the credit market is missing.

The purpose of this section is to report on a special case for which we have been able
to establish convergence, and characterize the dynamics completely.

We focus on the two-skill model with exogenous training cost, described in Section
4.2.2 above. To explain the nature of the dynamics, it will be necessary to consider
two possible zones in which λ might lie, when λ is not a steady state. We divide the
non-steady state space into two complementary parts: in the first subset (denoted by
A), the steady state condition fails owing to insufficient incentive of skilled households to
educate their children (the first inequality in (10) fails). Recall from Section 4.2.2 that
λ3 is the highest steady state value of λ, where skilled households are just indifferent
between educating their children and not. Then A is the range of skill ratios that exceed
λ3 (see Figure 3).

In the second subset (denoted by B), the steady state condition fails because unskilled
families strictly prefer not to educate their children. Equivalently, the second inequality
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in (10) fails. B is the union of all skill ratios lower than λ3 that do not constitute steady
states. In Figure 3 in which the set of steady states is simply the interval (λ4, λ3), the set
B is the set of skill ratios (0, λ4). In general, it is clear that A and B are disjoint owing
to the strict concavity of u. In what follows, we relate the dynamics of λ to membership
of the initial skill ratio in one of the sets A and B.

Proposition 7 If λ0 ∈ A, then there exists a unique competitive equilibrium from λ
which goes to the steady state in one period: λ = λ0 > λ1 = λt for all t ≥ 1.

If λ0 ∈ B, then there exists a unique competitive equilibrium in which the proportion
of skilled people increases strictly in every period, and converges to some steady state:
λt < λt+1 for all t ≥ 0.

If λ is a steady state, there is a unique competitive equilibrium from λ0 = λ, given by
λt = λ for all t.

Hence from any initial condition, there is a unique competitive equilibrium which
converges to a steady state. If the initial skill ratio is a steady state, the equilibrium
involves that ratio for ever thereafter. If it is a high ratio (in the set A) then the skill
ratio falls in just one generation to a steady state, and stays there forever after. This is
depicted in Figure 3 for the initial skill ratio depicted λ0. Since this ratio is very high, the
skill premium is too low to motivate educational investments that are consistent with a
steady state. Accordingly, at such a date, some skilled households will not educate their
children, and every unskilled household will behave likewise. This lowers the skill ratio
for the succeeding generation. The eventual steady state l(λ0) is pinned down by the
requirement that generation 0 skilled households are just indifferent between educating
and not educating their children. Since from generation 1 onwards the economy will
be in a steady state, the present value benefit of educating children for generation 0
households is given by the steady state benefit function b(λ), which must equal the
sacrifice for generation 0 skilled households:

κs(λ0) = b(l(λ0)) (20)

which determines the function l(λ0). The skill ratio l(λ0) must be a steady state because
it is smaller than λ0, so the sacrifice κs(l(λ0)) for skilled households must be smaller
than the benefit b(l(λ0)) — using equation (20), while the sacrifice for unskilled families
must be larger than b(l(λ0)).

In contrast, if the initial skill ratio is too low to constitute a steady state (i.e., is
in the set B), then convergence to the eventual steady state will occur gradually rather
than in one step. In Figure 3 this is represented by the initial skill ratio λ′

0. Then the
skill ratio will subsequently increase over time, with unskilled households progressively
switching to the high skill status. The dynamics is determined by the condition that they
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Figure 4: Map From Initial to Long-Run Skill Distribution

be indifferent between switching and not at every date. As more and more households
become skilled in this fashion, the skill premium declines over time, reducing the benefit
from switching. At the same time the cost of switching for unskilled households also
falls, as the unskilled wage rises over time. Since the convergence does not occur in one
step, the present value benefit of switching is not represented by the steady state benefit
function b(λ), but by the function depicted by b′ in Figure 3 which is lower (reflecting
the fact that the benefit of switching is falling over time). The dynamics is then pinned
down by the equality of sacrifice for unskilled families and the present value benefit b′,
as depicted in Figure 3. It is evident from this that the eventual steady state will be the
smallest steady state skill ratio lying above the initial skill ratio, in the case where the
latter is in the low range B. In Figure 3 this is the skill ratio λ4.

The corresponding map from initial to eventual skill ratios is depicted in Figure 4, and
from the initial skill premium (a measure of inequality) to eventual long-run per capita
income in Figure 5.28 These help predict the effect of initial conditions of the economy
to its long-run performance. These maps are nonmonotone, thus showing that orderings
of countries by human capital, inequality and per capita income can get reversed over
time. For instance countries with initial skill ratio higher than λ3 will eventually end up
with a lower skill ratio than countries starting with the skill ratio λ3. Correspondingly
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Figure 5: Map from Initial Skill Premium to Long-Run Per-Capita Income

countries that start with a high degree of equality (a low skill premium) end up more
unequal and with a lower per capita income. Intuitively, if the economy starts with an
excessively high proportion of skilled persons, the skill premium is low, reducing the
earnings of first generation skilled families. In turn this raises the sacrifice these families
must make to educate their children (since the education cost is fixed by assumption). In
order to compensate for this larger sacrifice, the benefit their children receive from being
skilled must rise. This requires that the eventual steady state must involve a higher skill
premium, i.e., a smaller fraction of the economy must be skilled.

Such reversals can only occur at the high end of the spectrum of initial skill ratios
(i.e., when starting in the set A). When initial skill ratios lie below (either in the steady
state set or in B), initial conditions and eventual outcomes are ordered in the same way.

Particularly interesting is the case where the economy starts in B, i.e., with sufficient
inequality. Then inequality falls over time, accompanied by a process of progressive
increase in education and skill within the population, which serves to raise per capita
income over time. However, the initial conditions do not (locally) affect the long-run
outcome, which is invariably the nearest steady state (λ4 in these figures). Hence one
shot redistributions in this case only have a transitory impact, that speed up the skill
upgrading process. In contrast when the economy starts in a steady state (e.g., in
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the interior of (λ4, λ3)), one shot redistributions do have an immediate and permanent
impact. At the other extreme, when the economy starts with a very high skill ratio (in
the set A), one shot redistributions have an immediate and permanent effect, but which
perversely causes a move in the opposite direction.

7 Summary and Research Directions

We explored three themes in this paper. First, in contrast to a literature which views
economic inequality as the outcome of ongoing stochastic shocks, we argued that there
are fundamental reasons for the market to generate inequality, even in a world of per-
fect certainty and ex-ante identical agents. All that is required is that educational loan
markets are imperfect. In particular, long run inequality is inevitable with multiple oc-
cupations, irrespective of the degree of foresight or intergenerational altruism of parents,
or the divisibility of investment options.

Second, we show that while the fate of individual dynasties may be plagued by
extreme and sensitive forms of path dependence, the same may not be true of an economy
in which the set of professions is “rich enough” to eliminate indivisibilities in the set of
investment options. Under some conditions, there is a unique steady state, so that a
one-time policy, while affecting some individual dynasties in a particular way, will have
opposite and compensating effects on other dynasties.

Finally, we characterized efficient steady states in our model. Because the credit
market is missing, it is of interest that some steady states may be efficient all the same.
At the same time if there are significant indivisibilities in occupational choice —- such
as the case of only two professions with an exogenous training cost —- there are two
continua of efficient and inefficient steady states. The inefficient steady states involve
underinvestment and greater inequality than every efficient steady state. Hence there is
potential scope for temporary policies or historical shocks to raise long run per capita
income while reducing inequality. Detailed dynamics of policy effects were subsequently
explored in the two profession context.

We conclude by describing ideas for future research. First, we know little about non-
steady-state dynamics outside the two profession case. Yet what happens outside steady
state is important for understanding how inequality evolves over time. For example, the
unique steady state in the case of perfectly divisible investments involves a linear (hence
convex) investment frontier. So the nonconvexities that create inequality must then be
entirely the effect of pecuniary externalities that appear endogenously out of steady state,
and we do not yet fully understand how this happens. Moreover, the relevance of steady
state analysis depends on whether the economy converges reasonably quickly to steady
states from arbitrary initial conditions.

The second major research question concerns extension to the case where financial
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bequests can supplement investments parents undertake in their children’s education.
Then families can effectively lend while being restricted in their borrowing. Conceivably
there might then be steady states without inequality, where less skilled dynasties com-
pensate for their lower human capital by holding and bequeathing more financial wealth.
The availability of financial bequests may also modify non-steady-state dynamics signifi-
cantly. Whether and how inequality evolves and persists in such contexts is an important
and challenging open question.

Finally, we believe that the research program outlined in this paper can find several
interesting applications to the interaction between trade and inequality. For instance,
different levels of inequality across countries may constitute a source of comparative ad-
vantage in products involving differential forms or levels of human capital. Moreover, the
model developed here may be used to predict the reciprocal effect of trade on inequality.
Alternatively, one may reinterpret the results in this paper for a global economy with
interaction. Suppose that the individuals of our model are countries, or more precisely
the planning agencies of these countries. View setup costs as infrastructural investments
made by the planners to facilitate a particular mix of economic activities in each coun-
try (e.g., a country may decide to subsidize agriculture, promote exports, or invest in
high technology production capabilities). Then — in the absence of a perfect interna-
tional capital market to finance these investments — global inequality must emerge, with
historical events determining the subsequent fate of individual countries.

Nevertheless, while individual fates can be altered, the world economy must exhibit
a certain compositional balance, if the investment technology is sufficiently ‘divisible’ or
‘rich’. Then our uniqueness results suggest that there will be high-tech exporters, but
not too many of them. And not all developing countries need be primary commodity
exporters, but there cannot be too few of them either. It may be hard to talk about
economic policies that imitate a Korea or a Hong Kong in the world economy. Sequenced
development that maintains global hierarchical compositions may be the rule rather than
the exception.
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Notes

1. Chatterjee [1994] considers a version of the neoclassical model where individual
feasible sets are defined by market prices and are therefore not strictly convex,
while the aggregate production function for the economy as a whole is strictly
convex. In this context inequality across individuals can persist, and at the same
time the aggregate capital stock is uniquely determined in steady state. We discuss
the relation of our approach to this version the neoclassical model below.

2. Notice that this feature, in a sense, is almost opposite in spirit to the first — in-
equality creating — aspect of uncertainty. For instance, Galor and Zeira [1993]
show that when there are significant investment thresholds, then final outcomes
for an individual may depend on initial conditions. This sort of path dependence is
easy enough to knock out — at least formally — by introducing some uncertainty,
however small, as long as the support of the uncertainty is quite large (for in-
stance, if there is always some probability that any given person will win the State
Lottery). The peculiar laws of stochastic processes running in infinite time then
dictate that there is full ergodicity of the Galor-Zeira process. But this conveys
a misleading impression that the Galor-Zeira model invariably tends to promote
long-run equality. One sensible way of dealing with this problem is to use expected
utility evaluations of all future streams, which would deal with low-probability
events by giving them insignificant utility weight. This is exactly the approach we
shall follow in evaluating welfares of households; consequently the results will not
depend in any intrinsic manner on the existence of small amounts of randomness.

3. This arises from the linearity of the investment technology at the individual level,
which coexists with strict concavity in the aggregate.

4. There is also an earlier literature on economic growth with nonconvex technologies
which yields similar results (see, e.g., Clark [1971], Skiba [1978], Majumdar and
Mitra [1982, 1983], Dechert and Nishimura [1983], and Mitra and Ray [1984]).

5. Much of the analysis extends to the many-consumption-good case. For details see
the working paper version of this paper (Mookherjee-Ray [2000b]).

6. Closedness is relative to the (product) weak topology on population measures over
the set of professions and the usual topology on c.

7. This captures the notion that each family has the option of not investing at all in
their children’s education.
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8. Then H is a set of vectors of capital stocks of various kinds, and the production
function describes combinations of capital stocks for the next period and consump-
tion good (λ′, c) producible from current capital stocks λ. Using the consumption
good as numeraire, w(h) will equal the marginal product of capital goods in terms
of the consumption good, and x(h) will measure the marginal opportunity cost of
producing the capital stock vector in terms of units of consumption god foregone.

9. Formally, derive the technology set from the following specifications. First, gross
output y = w(1)µ(1)+w(2)µ(2), where µ(h) is the input of labor of skill h. Next, a
potential supply of skilled labor is created using y′ units of the final good as input:
σ(2) = (1/x)y′, while the potential supply of unskilled labor σ(1) can be set to any
nonnegative value (compactify this by setting some irrelevant upper boundm > 1).
This creates the technology set T = {(µ, c, σ) ≥ 0| g = w(1)µ(1)+w(2)µ(2)−xσ(2)
and 0 ≤ σ(1) ≤ m}.

10. Formally, we can modify the final output production function from a linear speci-
fication to any constant returns concave specification: g = f(µ(1), µ(2)). Then the
returns w(h) are obtained as the value of the partial derivatives of this function.

11. A model with “warm glow” bequests (see, e.g., Galor and Zeira [1993] or Maoz
and Moav [1999]) will exhibit similar properties. Typically, the optimal bequest
will increase in wealth, so that the single-crossing property is once again satis-
fied: children of wealthier parents are more willing to invest in training. Hence
in a steady state there can be no occupational mobility, parallel to Proposition 1.
And Proposition 2 extends too, since lifetime utility must be strictly increasing in
inheritance.

12. For details, see the working paper version of this paper, Mookherjee and Ray
[2000b].

13. In particular, if the set of professions is an interval, and the steady state population
distribution over this set admits a density, then we require that density to be
positive throughout.

14. There are two possible reasons why the full-support assumption might fail. First,
certain professions may be inessential, either because the inputs they supply can
be supplied more efficiently by some other profession, or because the input has a
small enough marginal product at zero supply. For instance, suppose there are
only two inputs, and a large number of possible professions, each of which supplies
one of the two inputs. Then any profession which is not cost-effective in delivering
its input relative to some other profession will be unoccupied. In this case there
are effectively only two professions — those which deliver the respective inputs
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cost-effectively — that will be occupied. In this case we may simply redefine the
set of occupations to exclude those that are dominated by others. Secondly, even
if all professions are necessary, there could be trivial equilibria with zero output
simply because — and notwithstanding the fact that an unoccupied necessary
occupation is infinitely lucrative — unoccupied professions may be prohibitively
costly to acquire. We do not take this argument very seriously, as such steady
states literally rely on the assumption of a totally missing capital market and
a closed economy. With a slight perturbation of these assumptions — allowing
teachers to be imported and/or borrowing at a higher rate than the lending rate
— such steady states would no longer survive.

15. This applies only in the unrealistic event that skilled workers cannot perform un-
skilled tasks. More generally, if skilled workers can perform unskilled tasks, then
the skilled wage cannot ever fall below the unskilled wage. So when the skill inten-
sity λ is large enough that f1 < f2, wages will not be given by f1 and f2, but will
be equalized (as a result of skilled workers filling unskilled positions whenever the
latter pay higher wages). We omit this minor complication here because a com-
petitive equilibrium with a positive fraction of skilled workers will never give rise
to wage differentials that are incompatible with incentives for parents to educate
their children.

16. For instance, [T.2] rules out a technology in which profession h is the sole input
in the production of professional capacity h.

17. If [T.2] is dropped, we can prove the following version of the result. Say that a
steady state is divisible if the range of x(h) is an interval. Then if [T.1] and the full
support postulate holds, and there exists a divisible steady state with a positive
and bounded wage function w(h), there cannot exist any other divisible steady
state.

18. The argument — that in a “monotonic” family of wage functions there can be at
most one member that is consistent with profit maximization — may need to be
qualified when there are several consumption goods. In particular, the multiplicity
question needs further examination when demand-side compositional effects (as in
Baland and Ray [1991], Mani [2001] and Matsuyama [1999]) drive the story.

19. This is where we invoke the premise that a steady state exists with positive wages
throughout. Given that x(0) = 0, it is possible that no steady state has w(0) = 0.
Whether the proposition holds in that case remains an open question.

20. It is worthwhile to reiterate an important contrast with the competitive version
of the one good Ramsey model which combines macro-determinacy with micro-
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multiplicity (see, e.g., Chatterjee [1994]). There the aggregate capital stock is de-
termined uniquely in steady state, while its distribution across different households
is not. In particular, inequality is not tied down at all in that model. Proposition
4 in contrast provides conditions for the steady state distribution to be uniquely
determined.

21. We make this assumption for technical reasons, and not to suggest that the propo-
sition will fail if the number of professions is infinite. There are some technical
conditions involving the appropriate negation of (18) which we would rather avoid.

22. We look at weakly efficient points because professions that take no resources to
produce can be created in unlimited quantities. Of course, the supporting price for
such professional capacities (that is, x(h) for profession h) will be zero.

23. This suggests that ‘overinvestment’ will also be inconsistent with efficiency in the
presence of alternative instruments by which current generations can leave bequests
for their descendants, e.g., via financial assets. As explained in Section 7, consid-
eration of such forms of bequests is beyond the scope of this paper.

24. Exploit the strict concavity of u to see that u (ws(λ∗))−u (ws(λ∗)− x)< u′ (ws(λ∗)− x)x
= u′ (ws(λ∗)− x) δ

1−δ [w
s(λ∗) − x − wu(λ∗)] < δ

1−δ [u (w
s(λ∗)− x) − u (wu(λ∗))] <

u′ (wu(λ∗)) δ
1−δ [w

s(λ∗)− x−wu(λ∗)] = u′ (wu(λ∗))x < u (wu(λ))− u (wu(λ)− x).

25. Essentially, these are Inada conditions on any subset of inputs needed to produce
the final good.

26. Letting λh denote the number of people in occupation h, a steady state with positive
consumption c requires existence of a gross output λ0 of the final good such that
λ0 = a0λ0 +

∑
h x(h)λh + c, where λh = ahλ0 for each h and a0, ah denote cost-

minimizing input coefficients at the given wages. Such a λ0 exists for any given c
if 1− a0 − ∑

h ah > 0, which is guaranteed by the zero profit condition in the final
good sector (1 = a0 +

∑
hw(h)ah > a0 +

∑
h x(h)ah).

27. Even in the simplistic warm-glow formulations of intergenerational behavior, gen-
eral convergence arguments are hard to come by (see, e.g., Banerjee and Newman
[1993] for a discussion).

28. These figures correspond to the case depicted in Figure 3, where the set of steady
states constitutes a single interval.
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Appendix

Proof of Proposition 1. Say that an occupation h is dominated if there is a distinct occupation
g such that x(g) ≤ x(h) and w(g) ≥ w(h), with at least one of these inequalities strict. It should
be obvious that there is no set of dominated occupations which enjoys positive measure under λ.

Now suppose that the proposition is false, and there is a set of individuals of positive measure
such that for each individual in this set, a switch (to a distinct profession) takes place at some
date. Then — because there are only a countable infinity of dates — there is some common date
at which a professional switch takes place for a positive measure of individuals.

Claim. There exist undominated professions h, h′, g and g′ such that a person with occupation
h moves to g, one with h′ moves to g′ and the following property is satisfied: x(h) < x(h′) and
x(g) > x(g′).

To prove this claim, note that if a positive measure of people switch professions (say “up” from h
to g or “down” from h′ to g′), then to maintain the steady state distribution there must be flows
in the opposite direction. Moreover, all these professions must be undominated, because no set
of dominated professions exhibits postive measure under λ.

The Claim implies that there exist initial professions h and h′ such that w(h) < w(h′),
but with the property that the optimal choice of professions (g and g′ respectively) satisfies
x(g) > x(g′). Let V (h) denote the value function of starting at h under the going steady state.
Then, because g′ is feasible for h (after all, x(g′) < x(g)),

u (w(h)− x(g)) + δV (g) ≥ u (w(h)− x(g′)) + δV (g′),

while because g is feasible under w(h′) (because g is feasible under w(h) and w(h) < w(h′)),

u (w(h′)− x(g′)) + δV (g′) ≥ u (w(h′)− x(g)) + δV (g).

Combining these two inequalities and cancelling common terms, we see that

u (w(h′)− x(g′))− u (w(h)− x(g′)) ≥ u (w(h′)− x(g))− u (w(h)− x(g)) . (21)

However, given that w(h) < w(h′) and x(g′) < x(g), (21) contradicts the strict concavity of u.

Proof of Proposition 2. Let h and h′ be distinct professions with x(h) > x(h′). Then (because
dominated professions cannot be inhabited), w(h) > w(h′). Now we know by Proposition 1 that
for a person at h, choosing h represents the best continuation. It follows that

u (w(h)− x(h))
1− δ

≥ u (w(h)− x(h′)) +
δu (w(h′)− x(h′))

1− δ

> u (w(h′)− x(h′)) +
δu (w(h′)− x(h′))

1− δ

=
u (w(h′)− x(h′))

1− δ
,

which shows that a person at h has higher lifetime utility than a person at h′. Because no person
switches professions at a steady state (Proposition 1), the person at h must have a higher utility
at every date compared to the person at h′.
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Proof of Proposition 3. By the Inada conditions, there exists λ3 such that b(λ) and κs(λ) are
equalized. Notice that λ3 must be strictly less than λ2, which in turn is less than λ1. So, using
the strict concavity of the utility function, it must be the case that κu(λ3) > κs(λ3) = b(λ3).
Thus (10) is satisfied at λ3 and we have a steady state.

Now use the slopes of these curves to argue that for all λ < λ3 but sufficiently close to it,

κu(λ) ≥ b(λ3) ≥ κs(λ3),

which establishes that there must be a continuum of steady states.
To see that the steady states are ordered in terms of net output, consider the following

maximization problem for net output:

max
λ≥0

f(λ, 1− λ)− xλ. (22)

This is a strictly concave problem in λ and attains a unique maximum when f1−f2 = x. Recalling
that v = f1 while w = f2, we conclude that this is the point λ such that u(λ)− x = w(λ), which
is precisely λ2 in Figure 1. Because every steady state lies to the left of λ2 and the maximization
problem (22) is strictly concave, the result follows.

Proof of Proposition 4. The following elementary lemmas will be used.

Lemma 1 The unit cost function ψ(w, h) has the following properties:
[1] If two wage functions w and ŵ satisfy ŵ(h) ≥ w(h) for every h, then ψ(ŵ, h) ≥ ψ(w, h) for
every h.
[2] For every scalar α ≥ 1 and each h, ψ(αw, h) ≤ αψ(w, h).
[3] For every scalar α ∈ [0, 1] and each h, ψ(αw, h) ≥ αψ(w, h).
[4] In any steady state (λ,w, x, c), x(h) = ψ(w, h) for all h.

The proofs are obvious and therefore omitted. The verification of [2] and [3] uses constant
returns to scale, coupled with the fact that the price of the final good (which may be an input in
the production of some h) is normalized to unity.

Lemma 2 Under the full-support postulate, there cannot be two steady states, with distinct wage
functions ŵ and w such that ŵ(h) ≥ w(h) for all h.

Proof. Suppose the lemma is false. Then not only is ŵ(h) ≥ w(h) for all h, strict inequality
holds on a set of positive measure. Consider some steady state input distribution λ̂ that produces
the final good at level ĉ. By profit maximization and constant returns to scale in the production
sector,

ĉ− ŵλ̂ = 0,

so that by the full-support postulate,
ĉ− wλ̂ > 0.

But (given constant returns to scale) this violates profit maximization at the steady state with
wage function w.
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For the main proof, we retrace the steps of the informal discussion. Fix some steady state
(λ,w, x, c). We first prove the following claim: (12) holds for all h.

If x is zero throughout (12) follows trivially, as wages must be constant for all h. And if some
training costs are positive, Lemma 1 (part [4]) and the continuity of ψ implies that x must be
continuous in h, so the range of x is an interval of the form [0, X] for some X > 0. Obviously,
there is a function W defined on [0, X] such that for every h with x(h) > 0, w(h) = W (x(h)).
The full support postulate implies that every x in [0, X] is chosen by some families.

This implies that W must be continuous. Otherwise some level of x in the neighborhood of
a discontinuity will not be chosen, as it will be dominated by a neighboring x′ associated with a
substantially higher wage.

Next, consider any x in the interior of [0, X]. Then, invoking (9) and using the same argument
leading up to (10), we see that for every ε > 0 and sufficiently small,

u (W (x)− x)− u (W (x)− (x+ ε)) ≥ δ

1− δ
[u (W (x)− (x+ ε))− u (W (x)− x)]

≥ u (W (x+ ε)− x)− u (W (x+ ε)− (x+ ε)) .

Dividing these terms throughout by ε, applying the concavity of the utility function to the two
side terms, and the mean value theorem to the central term, we see that

u′ (W (x)− [x+ ε]) ≥ δ

1− δ
u′ (θ(ε))

[
W (x+ ε)−W (x)

ε
− 1

]
≥ u′ (W (x+ ε)− x) , (23)

where θ(ε) lies between W (x) − x and W (x + ε) − (x + ε). Now we may send ε to zero in (23)
and use the continuous differentiability of u to conclude that

lim
ε↓0

W (x+ ε)−W (x)
ε

exists, and equals
1
δ
.

Exactly the same argument applies when x = X (resp x = 0) to show the left-differentiability
(resp. right-differentiability) of W at that point. We may therefore conclude that for all x ∈
[0, X]:

W (x) =
1
δ
x+ w(0).

This establishes our claim that every steady state must satisfy (12) for all h.
With this claim in hand, we can complete the proof. Suppose that there is a steady state

wage function w with strictly positive wages throughout. Then, by the claim,

w(h) =
1
δ
x(h) + w(0). (24)

Suppose, contrary to the proposition, that there is another steady state (λ̃, w̃, x̃, c̃) with a distinct
wage function. Applying the claim again, we know that

w̃(h) =
1
δ
x̃(h) + w̃(0). (25)
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for every h. Combining (24) and (25), we see that

x̃(h)
x(h)

=
w̃(h)− w̃(0)
w(h)− w(0)

(26)

for all h such that both x(h) and x̃(h) are not simultaneously zero, interpreting this ratio to be
∞ in case x(h) = 0..

Now define α ≡ max w̃(h)
w(h) and β ≡ min w̃(h)

w(h) . Because w and w̃ are continuous functions and
w(h) > 0 everywhere, these terms are well-defined. Notice, moreover, that α > 1 and β < 1 if
the two wage functions are distinct (by virtue of Lemma 2).

Case 1. w̃(0)
w(0) < α. Let h∗ > 0 be some value of h such that α is attained. Then it is easy to see

that
x̃(h∗)
x(h∗)

=
w̃(h∗)− w̃(0)
w(h∗)− w(0)

> α. (27)

Define a new wage function w′′ such that w′′(h) ≡ αw(h) for all h. Then, using the fact that
α > 1 and invoking Lemma 1, part [2],

ψ(w′′, h∗) ≤ αψ(w, h∗) = αx(h∗),

while by Lemma 1, part [1],
x̃(h∗) = ψ(w̃, h∗) ≤ ψ(w′′, h∗).

Combining these two inequalities, we may conclude that

x̃(h∗) ≤ αx(h∗),

which contradicts (27).

Case 2. w̃(0)
w(0) = α. Let h∗ > 0 be some value of h such that β is attained. Then, parallel to (27),

we see that
x̃(h∗)
x(h∗)

=
w̃(h∗)− w̃(0)
w(h∗)− w(0)

< β. (28)

Continuing the parallel argument, define a function w′′′ such that w′′′(h) ≡ βw(h) for all h.
Then,using the fact that β < 1 and using Lemma 1, part [3],

ψ(w′′′, h∗) ≥ βψ(w, h∗) = βx(h∗),

while by Lemma 1, part [1],
x̃(h∗) = ψ(w̃, h∗) ≥ ψ(w′′′, h∗).

Combining these two inequalities, we see that

x̃(h∗) ≥ βx(h∗),

which contradicts (28).
Thus, in both cases we have a contradiction, so that the first part of the proposition is

established. The second part is obvious so does not need any proof.

Proof of Proposition 5.
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Lemma 3 Fix c ≥ 0, and suppose that {cs} is a nonnegative sequence starting from date t, not
identical to c at every s ≥ t. Then, provided that

∞∑
s=t

δs−tu(cs) ≥
∞∑

s=t

δs−tu(c), (29)

we must have ∞∑
s=t

δs−tcs >

∞∑
s=t

δs−tc. (30)

Proof. Suppose that there is a sequence of consumptions {cs}∞
s=t, distinct from c at some s ≥ t,

such that (29) holds. By an elementary inequality involving strictly concave functions, we know
that

u′(c)[cs − c] ≥ u(cs)− u(c), (31)

with strict inequality holding whenever cs 
= c.
Combining (29) and (31), we see that

u′(c)
∞∑

s=t

δs−t[cs − c] >
∞∑

s=t

δs−t[u(cs)− u(c)] ≥ 0,

and this completes the proof.

Now return to the proof of the theorem. Suppose, on the contrary, that there is some Pareto-
improving allocation {ct(i), λt} with

(ct, λt, λt+1) ∈ T
for all dates t, where ct ≡ ∫

[0,1] ct(i)di, and such that initial conditions are respected.
Then two things must happen. First the new allocation must be distinct for a positive

measure of individuals (at some date) from the old, and second, no individual at any date can
be worse off. Consequently, using (30) at any date t and adding up over all agents, we see that

∞∑
s=t

δs−tcs ≥
∞∑

s=t

δs−tc, (32)

where c is aggregate steady state consumption. Moreover, strict inequality must hold for some
date t.

Now, we know that at the steady state prices (w, x), profits are maximized at the steady
state allocation. Consequently, for each date s,

c+ xλ− wλ ≥ cs + xλs+1 − wλs (33)

Taking discounted sums and invoking (32) from Lemma 3, we see that

xλ− wλ

1− δ
≥

∞∑
s=t

δs−t[xλs+1 − wλs].
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where strict inequality must hold at date 0. Using (18), it can be seen that

a− 1
1− δ

wλ ≥
∞∑

s=t

δs−t[awλs+1 − wλs]. (34)

[Recall once again that strict inequality must hold at date t = 0.]
Leave the inequality at t = 0 undisturbed, but for t ≥ 1 multiply the corresponding inequality

on both sides by (a− δ)at−1. Then for any t ≥ 1, we have

at−1(a− δ)
a− 1
1− δ

wλ ≥ (a− δ)
∞∑

s=t

δs−t[atwλs+1 − at−1wλs]. (35)

Add these inequalities over all t ≥ 1. Notice that a < 1, otherwise we cannot have a steady state
competitive equilibrium. Therefore

−a− δ

1− δ
wλ ≥ (a− δ)

∞∑
t=1

∞∑
s=t

δs−t[atwλs+1 − at−1wλs]

= (a− δ)
∞∑

s=1

s∑
t=1

δs−t[atwλs+1 − at−1wλs]

= (a− δ)
∞∑

s=1

[
s∑

t=1

δs
(a
δ

)t

wλs+1 −
s∑

t=1

δs

a

(a
δ

)t

wλs

]

=
∞∑

s=1

[a(as − δs)wλs+1 − (as − δs)wλs] (36)

Now add both sides of (36) to the corresponding sides of the inequality (34) for t = 0. Remem-
bering that this latter inequality is strict, we see that

−wλ >
∞∑

s=1

[a(as − δs)wλs+1 − (as − δs)wλs] +
∞∑

s=0

δs[awλs+1 − wλs].

But careful inspection of the right-hand side of this inequality shows that it is also equal to −wλ,
which is a contradiction. This completes the proof.

Proof of Proposition 6. The following standard lemma will be used.

Lemma 4 Suppose that a boundary point z = (µ, c, σ) of T has a unique supporting price p =
(w, 1, x). Suppose further that for some alternative allocation z′ (not necessarily feasible), pz′ < 0.
Then for all α ∈ (0, 1) and sufficiently close to zero, (1− α)z + αz′ ∈ T .

Proof. Standard. See, e.g., Rockafellar [1979], Theorem 2.

We now turn to the proof of the proposition. Suppose that (18) is false at some steady state
(λ, c, w, x). Then one of the following must be true.
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[I]. There are professions h1 and h2 with x(h1) > x(h2) such that

w(h1)− w(h2) >
1
δ
[x(h1)− x(h2)]. (37)

[II]. There are four professions h1, h2, h3 and h4 (not necessarily all distinct) with x(h1) < x(h2)
and x(h3) < x(h4) such that

w(h2)− w(h1)
x(h2)− x(h1)

>
w(h4)− w(h3)
x(h4)− x(h3)

. (38)

Accordingly, we divide the analysis into two cases.

Case 1. [I] is true. Then there is ν ∈ (0, 1) and η > 0 such that

νw(h1)− w(h2)
x(h1)− x(h2)

> η >
1
δ
. (39)

Fix these two numbers in what follows. For any ε > 0 and small, define the distribution λε by

λε(h1) ≡ λ(h1) +
εν

x(h1)− x(h2)
, and

λε(h2) ≡ λ(h2)− εν

x(h1)− x(h2)
, (40)

while λε(h) = λ(h) otherwise (where λ is the original steady state distribution).
We first claim that there exists ε1 > 0 such that

(λ, c− ε, λε) ∈ T (41)

for all ε ∈ (0, ε1).
To establish this claim, calculate the “profit” generated by the allocation zε ≡ (λ, c − ε, λε)

(not necessarily feasible) at the steady state price vector p = (w, 1, x). We see that

pzε = (c− ε) + xλε − wλ = (ν − 1)ε < 0,

where use has been made of (40) and the fact that c+ xλ−wλ = 0. By Lemma 4, we know that
for all α ∈ (0, 1) and sufficiently small, (1 − α)z + αzε ∈ T , where z ≡ (λ, c, λ). Using (40), this
is easily seen to be equivalent to (41) (for ε small enough), and the claim is established.

Next, we claim that there exists ε2 > 0 such that

(λε, c+ ηε, λ) ∈ T (42)

for all ε ∈ (0, ε2), where η is defined in (39). To see this, calculate the “profit” generated by the
allocation z′

ε ≡ (λε, c+ ηε, λ):

pz′
ε = (c+ ηε) + xλ− wλε

= c+ ηε+ xλ− wλ− ενw(h1)− w(h2)
x(h1)− x(h2)

< c+ ηε+ xλ− wλ− ηε

= c+ xλ− wλ = 0,
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where the inequality in this string uses (39). So once again, by Lemma 4, we may conclude that
for all α ∈ (0, 1) and sufficiently small, (1 − α)z + αz′

ε ∈ T . Using (40), this is easily seen to be
equivalent to (42) (for ε small enough).

We use these constructions to create a path that Pareto-dominates the steady state. Consider
the following sequence of production plans: (zε, z

′
ε, z, z, . . .), where 0 < ε < min{ε1, ε2}. By (41)

and (42), such a path is (technologically) feasible.
Relative to the steady state, this path displays an aggregate consumption shortfall of ε in

period 0, an aggregate consumption excess of ηε in period 1, and no difference thereafter. Divide
the “transitional” differences equally among all agents. Notice that agents after period 1 are
unaffected, while all agents at period 1 are strictly better off. It remains to check period 0.
The gain in utility for each person i at date 0 is just ∆(i) ≡ [u (c(i)− ε) + δu (c(i) + ηε)] −
[u (c(i)) + δu (c(i))]. Notice that

∆(i) ≥ δu′ (c(i) + ηε) ηε− u′ (c(i)− ε) ε

=
ε

u′ (c(i)− ε)

[
δη
u′ (c(i) + ηε)
u′ (c(i)− ε)

− 1
]
,

Now, there are only a finite number of possible values which c(i) can assume, and all of them
are strictly positive. Use this information together with the smoothness of u, and the fact that
δη > 1(from (39)) to conclude that for ε small enough,

∆(i) > 0

for every agent i. This completes the proof in Case 1.

Case 2. [II] is true. With (38) in mind, choose ρ such that

w(h2)− w(h1)
w(h4)− w(h3)

> ρ >
x(h2)− x(h1)
x(h4)− x(h3)

, (43)

and then γ such that
0 < γ < ρ[x(h4)− x(h3)]− [x(h2)− x(h1)]. (44)

Now adjust the steady state distribution λ as follows. For any ε > 0 and small, define λε by

λε(h1) ≡ λ(h1)− ε,

λε(h2) ≡ λ(h2) + ε,

λε(h3) ≡ λ(h3) + ρε, and
λε(h4) ≡ λ(h4)− ρε, (45)

(46)

while λε(h) = λ(h) otherwise. We claim that there exists ε3 > 0 such that

(λ, c+ γε, λε) ∈ T (47)

for all ε ∈ (0, ε3).
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To establish this, observe that if zε ≡ (λ, c+ γε, λε) and z ≡ (λ, c, λ), then

pzε = pzε − pz = γε− x(h1)ε+ x(h2)ε− x(h4)ρε+ x(h3)ρε
= γε+ {[x(h2)− x(h1)]− ρ[x(h4)− x(h3)]}ε
< γε− γε = 0,

where the last inequality uses (44). Applying Lemma 4 as before, we are done.
Next, we claim that there exists ε4 > 0 such that

(λε, c, λ) ∈ T (48)

for all ε ∈ (0, ε4). To prove this, define z′
ε ≡ (λε, c, λ) and note that

pz′
ε = pz′

ε − pz = −w(h2)ε+ w(h1)ε− w(h3)ρε+ w(h4)ρε
= ε{[w(h4)− w(h3)]ρ− [w(h2)− w(h1)]}
< 0,

where the last inequality uses (43). The claim then follows from a final application of Lemma 4.
Just as in Case 1, we may now construct a Pareto-dominating path. Consider the sequence

of production plans (zε, z
′
ε, z, z, . . .), where 0 < ε < min{ε3, ε4}. By (47) and (48), such a path is

(technologically) feasible. Relative to the steady state, this path displays an aggregate consump-
tion surplus of γε in period 0 and no difference thereafter. Divide this surplus equally among all
date-0 agents. Clearly, a Pareto-improvement has taken place, and the proof is complete.

Proof of Proposition 7. We describe the maximization problem for each household in any
competitive equilibrium of the two profession economy as follows. Define a sequence of values
{V̄t, V t} describing the infinite-horizon payoffs to each generation at each date, conditional on
starting skilled or unskilled. That is, for each t,

V̄t = max
ct,xt

[u(ct) + δVt+1(xt)]

subject to the conditions that
ct + xt = ws

t ,

and

Vt+1(xt) = V̄t+1 if xt ≥ x

= V t+1 if xt < x.

Likewise,V t denotes the maximum value of the above problem for a currently unskilled household
with income wu

t instead of ws
t . For given initial skill distribution λ0 ∈ (0, 1), a competitive

equilibrium is therefore a sequence of wages and subsequent skill distributions {ws
t , w

u
t , λt}∞

t=0
such that

[i] Given λ0, the path of subsequent skill distributions {λt} is generated by the maximization
problems just described,
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[ii] For each t, ws
t = ws(λt) and wu

t = wu(λt) if λt < λ1, and ws
t = wu

t = ws(λ1) = wu(λ1) if
λt ≥ λ1.

In order to avoid qualifying statements for the initial value of λ, we make the inessential
assumption that λ0 ∈ (0, λ1).

Next observe that in any competitive equilibrium, there cannot be any date at which an
unskilled household decides to educate its children, while a skilled household does not. For if an
unskilled household were to educate its children, then

u(wu
t − x) + δV̄t+1 ≥ u(wu

t ) + δV t+1,

or
u(wu

t )− u(wu
t − x) ≤ δ[V̄t+1 − V t+1].

By strict concavity and the fact that λt < λ1 for all t, we may conclude that

u(ws
t )− u(ws

t − x) < δ[V̄t+1 − V t+1].

But this means that a skilled household has a strict incentive to educate its children.
It follows from this observation that in any competitive equilibrium, if the proportion of

skilled households increases from one generation t to the next, it must be the case that all
skilled households at date t are educating their children, and some unskilled households as well.
Moreover, some unskilled households must also be deciding to not educate their children —
otherwise there would be no unskilled households at date t + 1. It must then be the case that
when some unskilled households switch professions, they must be exactly indifferent between
switching and not switching professions. Conversely, if the proportion of skilled households goes
down from one generation to the next, it must be the case that some skilled households change
professions while being exactly indifferent between switching and not. Hence at every date, the
lifetime utility of the skilled (and unskilled) must be equal to the utility they would have received
were their descendants never to switch status: at every date t,

V̄t =
∞∑

s=t

δs−tu(ws
s − x) (49)

and

V t =
∞∑

s=t

δs−tu(wu
s ). (50)

This implies that for a household that is skilled at date t:

∞∑
s=t

δs−tu(ws
s − x) ≥ u(ws

t ) +
∞∑

s=t+1

δs−tu(wu
s ),

or equivalently,

u(ws
t )− u(ws

t − x) ≤
∞∑

s=t+1

δs−t[u(ws
s − x)− u(wu

s )], (51)
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with equality holding whenever a switch from “skilled” to “unskilled” occurs at date t. Likewise,
for the currently unskilled, the sacrifice involved in educating their children exceeds or just equals
the benefit of all their descendants switching from the unskilled to the skilled profession:

u(wu
t )− u(wu

t − x) ≥
∞∑

s=t+1

δs−t[u(ws
s − x)− u(wu

s )], (52)

with equality holding whenever a switch from “unskilled” to “skilled” does occur along the
equilibrium path.

Next, we establish some useful lemmas concerning dynamic properties of any competitive
equilibrium.

Lemma 5 If λt > λt+1, then λt ∈ A and λt+1 = λt+2.

If λt < λt+1, then λt ∈ B and λt+1 ≤ λt+2.

Warning. Note that the two statements in the lemma are not symmetric. The lack of symmetry
will become even clearer later.

Proof of Lemma 5. We begin by establishing the first part of the first statement. Because
λt > λt+1, (51) must hold with equality, and we have

u(ws
t )− u(ws

t − x) = δ[u(ws
t+1 − x)− u(wu

t+1)] + δ2M (53)

where M ≡ ∑∞
s=t+2 δ

s−(t+2)[u(ws
s − x)− u(wu

s )]. Using (51) for period t+ 1, we see that

u(ws
t+1)− u(ws

t+1 − x) ≤ δM. (54)

Combining (53) and (54), we see that

u(ws
t )− u(ws

t − x) ≥ δ[u(ws
t+1)− u(wu

t+1)].

Because λt > λt+1, we see that ws
t+1 > ws

t and wu
t+1 < wu

t . Therefore

u(ws
t )− u(ws

t − x) > δ[u(ws
t )− u(wu

t )],

which shows that λt ∈ A.
The proof of the first part of the second statement is completely parallel, but because (as

noted above) there is an asymmetry lurking here it will be useful to simply retrace these steps
and convince ourselves that they indeed go through.

For this part, λt < λt+1, so that (52) must hold with equality, and we have

u(wu
t )− u(wu

t − x) = δ[u(ws
t+1 − x)− u(wu

t+1)] + δ2M (55)

where M is defined just as before. Using (52) for period t+ 1, we see that

u(wu
t+1)− u(wu

t+1 − x) ≥ δM. (56)
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Combining (55) and (56), we see that

u(wu
t )− u(wu

t − x) ≤ δ[u(ws
t+1 − x)− u(wu

t+1 − x)].

Because λt < λt+1, we see that ws
t+1 < ws

t and wu
t+1 > wu

t . Therefore

u(wu
t )− u(wu

t − x) < δ[u(ws
t − x)− u(wu

t − x)],

which shows that λt ∈ B.
Next, we establish the second part of the first statement: that λt+1 = λt+2. Suppose this is

false. Then there are two cases to consider.
Case 1: λt+1 < λt+2. Then at date t+ 1, (52) must hold with equality, so that

u(wu
t+1)− u(wu

t+1 − x) = δM. (57)

Combining (53) and (57), we see that

u(ws
t )− u(ws

t − x) = δ[u(ws
t+1 − x)− u(wu

t+1 − x)]. (58)

Because λt > λt+1, we have ws
t > wu

t > wu
t+1. Consequently, by the strict concavity of the utility

function,
u(ws

t )− u(ws
t − x) < u(wu

t )− u(wu
t − x) < u(wu

t+1)− u(wu
t+1 − x). (59)

Combining (58) and (59), we may conclude that

u(wu
t+1)− u(wu

t+1 − x) > δ[u(ws
t+1 − x)− u(wu

t+1 − x)].

But this means that λt+1 
∈ B. On the other hand, we have λt+1 < λt+2, and this contradicts
the first part of the second statement of the lemma, which we have already proved.
Case 2: λt+1 > λt+2. Then at date t+ 1, (51) must hold with equality, so that

u(ws
t+1)− u(ws

t+1 − x) = δM. (60)

Combining (53) and (60), we see that

u(ws
t )− u(ws

t − x) = δ[u(ws
t+1)− u(wu

t+1)]. (61)

Because λt > λt+1, we have ws
t < ws

t+1. Consequently, by the strict concavity of the utility
function,

u(ws
t )− u(ws

t − x) > u(ws
t+1)− u(ws

t+1 − x). (62)

Combining (61) and (62), we may conclude that

u(ws
t+1)− u(ws

t+1 − x) < δ[u(ws
t+1)− u(wu

t+1)].

But this means that λt+1 
∈ A. On the other hand, we have λt+1 > λt+2, and this contradicts
the first part of the first statement of the lemma, which we have already proved.

Finally, we prove the second part of the second statement: that λt+1 ≤ λt+2. Suppose this is
false. Then λt+1 > λt+2. Thus at date t+ 1, (51) must hold with equality, so that

u(ws
t+1)− u(ws

t+1 − x) = δM. (63)
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Combining (55) and (63), we see that

u(wu
t )− u(wu

t − x) = δ[u(ws
t+1)− u(wu

t+1)]. (64)

Because λt < λt+1, we have wu
t < wu

t+1 ≤ ws
t+1. Consequently, by the strict concavity of the

utility function,

u(wu
t )− u(wu

t − x) > u(wu
t+1)− u(wu

t+1 − x) ≥ u(ws
t+1)− u(ws

t+1 − x). (65)

Combining (64) and (65), we may conclude that

u(ws
t+1)− u(ws

t+1 − x) < δ[u(ws
t+1)− u(wu

t+1)].

But this means once again that λt+1 satisfies the first inequality in (10), or equivalently, that
λt+1 
∈ A. On the other hand, we have λt+1 > λt+2, and this contradicts the first part of the
first statement of the lemma, which we have already proved.

Lemma 6 If λ is a steady state, then there is a unique competitive equilibrium from λ0 = λ,
given by λt = λ for all t.

Proof. Immediate from Lemma 5. For if the competitive equilibrium is nonstationary, then it
must be the case that either λ ∈ A or λ ∈ B (simply examine the first date that λt 
= λt+1 and
apply Lemma 5). In either of these cases, λ cannot be a steady state.

A converse to this result is the subject of the next lemma.

Lemma 7 If at any date t along a competitive equilibrium we have λt = λt+1, then λ ≡ λt = λt+1
is a steady state, and in particular λs = λt for all s ≥ t.

Proof. Suppose not. Then by Lemma 6, it must be the case that either λ ∈ A or λ ∈ B.

Case 1: λ ∈ A. In this case, renumbering time periods if necessary, we must have λt = λt+1 >
λt+2 (using Lemma 5). Thus (51) must hold with equality at date t+ 1, so that

u(ws
t+1)− u(ws

t+1 − x) = δM, (66)

while at date t
u(ws

t )− u(ws
t − x) ≤ δ[u(ws

t+1 − x)− u(wu
t+1)] + δ2M (67)

Combining (66) and (67), we see that

u(ws
t )− u(ws

t − x) ≤ δ[u(ws
t+1)− u(wu

t+1)]
= δ[u(ws

t )− u(wu
t )].

But this means that λ 
∈ A, which is a contradiction.
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Case 2: λ ∈ B. In this case, renumbering time periods if necessary, we must have λt = λt+1 <
λt+2 (using Lemma 5). Thus (52) must hold with equality at date t+ 1, so that

u(wu
t+1)− u(wu

t+1 − x) = δM, (68)

while at date t
u(wu

t )− u(wu
t − x) ≥ δ[u(ws

t+1 − x)− u(wu
t+1)] + δ2M (69)

Combining (68) and (69), we see that

u(wu
t )− u(wu

t − x) ≥ δ[u(ws
t+1 − x)− u(wu

t+1 − x)]
= δ[u(ws

t − x)− u(wu
t − x)].

But this means that λ 
∈ B, which is a contradiction.
So neither Case 1 nor Case 2 is possible. This means that λ is a steady state. Applying

Lemma 6, we see that there is a unique stationary equilibrium, and we are done.

We now return to the proof of the proposition. To prove the first part of the proposition, note
that if there is a competitive equilibrium, then by Lemmas 5 and 7, it must have the property
discussed in the statement of the proposition. To check existence and uniqueness, define λ1 by

u(ws(λ))− u(ws(λ)− x) ≡ δ(1− δ)−1[u(ws(λ1)− x)− u(wu(λ1))].

It is easy to see that λ1 is well-defined and unique, and that λ1 < λ. Now check that this gives us
a competitive equilibrium, and that there is no other way of constructing an path that satisfies
both (51) and (52).

To prove the second part of the proposition, we first need to strengthen the implication of
Lemma 5 in this case. It will be enough to strengthen the second part of the statement of that
lemma to: If λt < λt+1, then λt ∈ B and λt+1 < λt+2.

All of this is proved except for the stronger implication: λt+1 < λt+2. To establish this,
suppose that the assertion is false. Then, using Lemma 5, it must be the case that λt < λt+1 =
λt+2. By Lemma 7, we have λt+1 = λs for all s ≥ t + 1. Also, (52) must hold with equality at
date t. Combining these two pieces of information, we see that

u(wu
t )− u(wu

t − x) = δ(1− δ)−1[u(ws
t+1 − x)− u(wu

t+1)].

Now λt < λt+1, so that wu
t < wu

t+1. By the strict concavity of u and the equality above,

u(wu
t+1)− u(wu

t+1 − x) < δ(1− δ)−1[u(ws
t+1 − x)− u(wu

t+1)].

But this means that λt+1 ∈ B as well. But then by Lemma 7, it cannot be the case that
λt+1 = λt+2.

To prove existence and uniqueness from this initial condition, define recursively for each λt,
the value of λt+1 that solves the equation

u(wu
t )− u(wu

t − x) ≡ δ[u(ws
t+1 − x)− u(wu

t+1 − x)], (70)

where ws
t+1 and wu

t+1 are to be interpreted as the wages corresponding to λt+1.
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To see that this is uniquely defined, note that

u(wu
0 )− u(wu

0 − x) < δ[u(ws
0 − x)− u(wu

0 − x)],

because λ0 ∈ B. So there is a unique λ1 that solves (70) for t = 0. Note that λ1 must exceed λ0.
And this will be so whenever λt ∈ B. So it only remains to show that if λt ∈ B, then λt+1 ∈ B
as well. To see thus simply use the fact that λt+1 > λt, which implies that wu

t+1 > wu
t . Using

this information in (70) along with the strict concavity of u, we are done.
Finally, part 3 of the proposition is already established.
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