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Abstract

Arrow’s celebrated theorem shows that the aggregation of individ-
uals’ preferences into a social ordering cannot make the ranking of any
pair of alternatives depend only on individuals’ preferences over that
pair, unless the fundamental Pareto and non-dictatorship principles
are violated. In a unified approach covering the theory of social choice
and the theory of fair allocation, we investigate how much information
is needed to rank a pair of allocations by social ordering functions and
by allocation rules satisfying the Pareto principle and anonymity. In
the standard model of division of commodities, we show that knowl-
edge of a good portion of indifference hypersurfaces is needed for social
ordering functions, whereas allocation rules require only knowledge of
marginal rates of substitution.
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1 Introduction
From Arrow’s celebrated theorem of social choice, it is well known that the
aggregation of individuals’ preferences into a social ordering cannot make the
social ranking of any pair of alternatives depend only on individuals’ prefer-
ences over that pair (this is the famous axiom of Independence of Irrelevant
Alternatives). Or, more precisely, it cannot do so without trespassing basic
requirements of unanimity (the Pareto principle) and anonymity (even the
very weak condition of non-dictatorship). This raises the following question:
What additional information about preferences would be needed in pairwise
comparisons in order to make the aggregation of preferences possible, and
compatible with the basic requirements of unanimity and anonymity?
In the last decades, the literature on social choice has explored several

paths and gave interesting answers to this question. The main avenue of
research has been, after Sen (1970) and d’Aspremont and Gevers (1977), the
introduction of information about utilities, and it has been shown that the
classical social welfare functions, and less classical ones, could be obtained
with the Arrovian axiomatic method by letting the social preferences take
account of specific kinds of utility information. Another, very important,
approach, initiated by Foley (1967), Kolm (1972) and Varian (1974) among
others,1 has studied the problem of fair allocation in economic models and
has managed to get round Arrow—like impossibility and to propose a myriad
of nicely behaved allocation rules. Although the usual interpretation of this
success rests on the fact that allocation rules do not aggregate preferences
but only selects a subset of first-best allocations, the relationships between
the theory of fair allocation and the theory of social choice have remained
rather loose up to now.
In this paper, we focus on the introduction of additional information

about preferences that is not of the utility sort. In other words, we retain
a framework with purely ordinal, non-comparable preferences. The kind of
information that we study is about the shape of indifference curves, and we
ask how much one needs to know about the indifference curves to rank a
pair of allocations by social ordering functions satisfying the unanimity and
anonymity requirements. The introduction of this additional information is
formulated here in terms of weakening Arrow’s axiom of independence of
irrelevant alternatives. As shown below, it turns out that a good deal of

1For a survey, see Moulin and Thomson (1997).
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information is needed. Purely local information like marginal rates of substi-
tution would not do, and we establish an extension of Arrow’s theorem to
this kind of information.
We also study the same question about allocation rules, whose particular

feature is that they dichotomize all allocations between the desirable ones
and the rest. We show that additional information is also needed there,
although in a less demanding way. For instance, information about marginal
rates of substitution is enough to get out of Arrow-like impossibility.
The framework adopted here is an economic model, namely, the canonical

model of division of infinitely divisible commodities among a finite set of
agents. We chose to study an economic model rather than the abstract
model that is now commonly used in the theory of social choice2 for three
reasons. First, it allows a more fine-grained analysis of the information about
preferences, because it makes it sensible to talk about marginal rates of
substitution and other local notions about indifference curves. Second, in
an economic model preferences are naturally restricted, and by considering a
restricted domain we can hope to obtain positive results with less information
than under unrestricted domain. Third, it makes it possible to compare the
informational requirements for social ordering functions and allocation rules
in a context that is relevant to the existing literature on fair allocation. In
this way, we are able to contribute to bridging the gap between the theory
of social choice and the theory of fair allocation.
The motivation for our research draws on many straws taken from recent

and less recent literature. Attempts to construct social ordering functions and
similar objects embodying unanimity and equity requirements were made by
Suzumura (1981a,b, 1983) and Tadenuma (1998). Fleurbaey (1996) and Roe-
mer (1996) noticed that most allocation rules in the theory of fair allocation
violate conditions akin to the Arrow independence of irrelevant alternatives,
although they do not use utility information. The idea that information
about indifference curves is sufficient, hinted at by Pazner and Schmeidler
(1978) and Maniquet (1994), was revived by Bossert, Fleurbaey and Van de
gaer (1999) and Fleurbaey and Maniquet (1996, 2000) who were able to con-
struct nicely behaved social ordering functions on this basis. Campbell and
Kelly (2000) recently studied essentially the same issue in the abstract model
of social choice, and showed that limited information about preferences may

2Recollect, however, that Arrow’s initial presentations (1950, 1951) dealt with this
economic model of division of commodities.
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be enough, although they focus on non-dictatorship and do not study how
much information is necessary with the stronger requirement of anonymity.
Le Breton (1997), in a nice synthesis, presented a unified view of the theory
of social choice and the theory of fair allocation, but without emphasizing
the issue of the informational basis.
The paper is organized as follows. The next section introduces the frame-

work and the main notions. The results are presented in Section 3, for social
ordering functions, and in Section 4, for allocation rules. Section 5 concludes.
The appendix contains some proofs.

2 Model and Definitions

2.1 The Model

The population is fixed. Let N = {1, ..., n} be the set of agents where
2 ≤ n < ∞. There are ` goods indexed by k = 1, ..., ` where 2 ≤ ` < ∞.
Agent i’s consumption bundle is a vector xi = (xi1, ..., xi`). An allocation is
a vector x = (x1, ..., xn). The set of allocations is Rn`

+ . The set of allocations
such that no individual bundle xi is equal to the zero vector is denoted X.
A preordering is a reflexive and transitive binary relation. Agent i’s

preferences are described by a complete preordering Ri (strict preference Pi,
indifference Ii) on R`

+. A profile of preferences is denoted R = (R1, ..., Rn).
Let R be the set of continuous, convex, and strictly monotonic preferences
over R`

+.
There is no production,3 and the amount of total resources is a given

ω ∈ R`
++. All allocations x such that

P
i∈N xi ≤ ω are said to be feasible.4

Let
F = {x ∈ Rn`

+ |
X
i∈N

xi = ω}.

Notice that all our results would remain true under the assumption of free
disposal, that is, under the alternative definition of F as {x ∈ Rn`

+ |
P

i∈N xi ≤
ω}. Let E(R) denote the set of Pareto-efficient allocations. Because of strict
monotonicity of preferences, there is no need to distinguish Pareto-efficiency
in the strong sense and in the weak sense.

3Our results about social ordering functions could be extended with little change to
the case when production is possible.

4Vector inequalities are denoted as usual: ≥,>, and À.
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A social ordering function (SOF) is a mapping R̄ defined on Rn, such
that for all R ∈ Rn, R̄(R) is a complete preordering on the set of alloca-
tions Rn`

+ . Let P̄ (R) (resp. Ī(R)) denote the related strict preference (resp.
indifference) relations.
An allocation rule (AR) is a set-valued mapping S defined on Rn, such

that for all R ∈ Rn, S(R) is a non-empty subset of F. An AR is essentially
single-valued if all selected allocations are Pareto-indifferent:

∀x, y ∈ S(R), ∀i ∈ N, xiIiyi.

An alternative definition of SOFs and ARs makes them a function of ω
as well as R. This is useful when changes in ω are studied, but here we
focus only on the information about preferences, and since ω is kept fixed
throughout the paper, we omit this argument.
An AR dichotomizes the set of all allocations between the desirable ones

and the rest. Hence, it can be regarded as a “two-tier” SOF. The fact that
ARs are just a particular kind of SOF allows us to study the informational
bases for SOFs and ARs in a unified way. In particular, the axioms of inde-
pendence which, as presented below, express the informational requirements
for SOFs, can be directly applied to ARs, without restriction.
Let π be a bijection on N. For any x ∈ Rn`

+ , define π(x) = (x
0
1, ..., x

0
n) ∈

Rn`
+ by x0i = xπ(i) for all i ∈ N, and for any R ∈ Rn, define π(R) =
(R01, ..., R

0
n) ∈ Rn by R0i = Rπ(i) for all i ∈ N . Let Π be the set of all

bijections on N . The basic requirements of unanimity and anonymity on
which we focus in this paper are the following.

Weak Pareto for SOF: ∀x, y ∈ Rn`
+ , ∀R ∈ Rn if ∀i ∈ N, xiPiyi, then

xP̄ (R)y.

This axiom cannot be applied to ARs, because it requires a too fine-
grained ranking of allocations. The usual practice in the theory of fair allo-
cation is to require the selected allocations to be Pareto-efficient.

Pareto for AR: ∀R ∈ Rn, S(R) ⊂ E(R).
Anonymity for SOF: ∀x, y ∈ Rn`

+ , ∀R ∈ Rn, ∀π ∈ Π,

xR̄(R)y ⇔ π(x) R̄(π(R)) π(y).

This axiom may be directly applied to ARs, although it is worthwhile to
notice that it then boils down to the following simple condition.
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Anonymity for AR: ∀R ∈ Rn, ∀π ∈ Π, ∀x ∈ S(R), π(x) ∈ S(π(R)).
Concerning the non-dictatorship form of anonymity, we only define here

what dictatorship means, for convenience. Notice that it has to do only with
allocations in X, that is, without any zero bundle.

Dictatorial SOF: The SOF R̄ is dictatorial if there exists i0 ∈ N such that:

∀x, y ∈ X, ∀R ∈ Rn, xi0Pi0yi0 ⇒ xP̄ (R)y.

Again, this definition is not meaningful for ARs, since it cannot be ob-
served among “two-tier” rankings. Following Le Breton (1997), and in view
of monotonicity of individual preferences, we propose the following adapted
definition for ARs.

Dictatorial AR: The AR S is dictatorial if there exists i0 ∈ N such that:

∀R ∈ Rn, S(R) = {x ∈ Rnl
+ |xi0 = ω}.

It is also worth introducing the following axiom, which is specific to ARs.5

Equal Treatment of Equals (for AR): ∀R ∈ Rn, ∀x ∈ S(R), ∀i, j ∈ N,
if Ri = Rj , then xiIixj.

Lemma 1 Any essentially single-valued AR satisfying Anonymity also sat-
isfies Equal Treatment of Equals.

2.2 Variants of Independence of Irrelevant Alterna-
tives

The traditional, Arrovian, version of Independence of Irrelevant Alternatives
is:

Independence of Irrelevant Alternatives (IIA): ∀x, y ∈ Rn`
+ , ∀R,R0 ∈

Rn, if ∀i ∈ N, xiRiyi ⇔ xiR
0
iyi, then xR̄(R)y ⇔ xR̄(R0)y.

Notice that it would be equivalent to write the conclusion as:

xP̄ (R)y ⇔ xP̄ (R0)y.

This remark will be useful when adapting this condition to ARs.
5Related conditions can be defined for SOFs. See footnote 8.
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It is possible to weaken IIA by strengthening the premise. This amounts
to allowing the SOF to make use of more information when ranking any pair
of allocations.
We first consider the possibility for the SOF to take account of marginal

rates of substitution. Economists are used to focus on marginal rates of
substitution when assessing the efficiency of an allocation, especially under
convexity, since for convex preferences the marginal rates of substitution
determine the half space in which the upper contour set lies. Moreover,
for efficient allocations, shadow prices enable one to compute the relative
implicit income shares of different agents, thereby potentially providing a
relevant measure of inequalities in the distribution of resources. Therefore,
taking account of marginal rates of substitution is a natural extension of the
informational basis of social choice in economic environments. Let C(xi, Ri)
denote the cone of price vectors that support the upper contour set for Ri at
xi :

C(xi, Ri) = {p ∈ R`|∀y ∈ R`
+, py = pxi ⇒ xiRiy}.

When preferences Ri are strictly monotonic, one has C(xi, Ri) ⊂ R`
++ when-

ever xi À 0.

IIA with Marginal Rates of Substitution (IIA-MRS): ∀x, y ∈ Rn`
+ ,

∀R,R0 ∈ Rn, if ∀i ∈ N, xiRiyi ⇔ xiR
0
iyi and C(xi, Ri) = C(xi, R

0
i),

C(yi, Ri) = C(yi, R
0
i), then xR̄(R)y ⇔ xR̄(R0)y.

Marginal rates of substitution give an infinitesimally local piece of infor-
mation about preferences at given allocations. It would be interesting to take
account of the preferences over some finitely sized neighborhoods of the two
allocations. Define, for any small real number ε > 0,

Bε(xi) = {v ∈ R`
+| max

k∈{1,...,`}
|xik − vk| ≤ ε}

IIA with ε-Neighborhoods (IIA-εN): ∀x, y ∈ Rn`
+ , ∀R,R0 ∈ Rn, if ∀i ∈

N, xiRiyi ⇔ xiR
0
iyi and ∀ (z, z0) ∈ Bε(xi)

2 ∪ Bε(yi)
2, zRiz

0 ⇔ zR0iz
0, then

xR̄(R)y ⇔ xR̄(R0)y.

An alternative extension of the informational basis allows the SOF to
take account of parts of indifference hypersurfaces. The indifference sets are
defined as

I(xi, Ri) = {z ∈ R`
+ | zIixi}.
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Here we consider two ways of focusing on parts of such sets. First, it is natural
to focus on the part of indifference sets which lies within the feasible set.
However, when considering any pair of allocations, the two allocations may
need different amounts of total resources to be feasible. Therefore we need
to introduce the following notions. The smallest amount of total resources
which makes two allocations x and y feasible can be defined by ω(x, y) =
(ω1(x, y), ...,ω`(x, y)), where ωk(x, y) = max{

P
i∈N xik,

P
i∈N yik} for all k ∈

{1, ..., `}. For any vector t ∈ R`
+, define the set Ω(t) ⊂ R`

+ by

Ω(t) =
©
z ∈ R`

+ | z ≤ t
ª

The following axiom captures the idea that the ranking of two allocations
should depend only on the indifference sets, and on preferences over the
minimal subset in which the two allocations are feasible.

IIA with Indifference Sets on Feasible Allocations (IIA-ISFA):
∀x, y ∈ Rn`

+ , ∀R,R0 ∈ Rn, if ∀i ∈ N, I(xi, Ri) ∩ Ω(ω(x, y)) = I(xi, R
0
i) ∩

Ω(ω(x, y)), I(yi, Ri) ∩ Ω(ω(x, y)) = I(yi, R
0
i) ∩ Ω(ω(x, y)), then xR̄(R)y ⇔

xR̄(R0)y.

It will actually be worth considering a much weaker axiom, which relies
on radial expansions of the minimal feasible set in which the two allocations
to be compared are feasible. A radial expansion is defined as follows: for any
set Q ⊂ R` and any λ ≥ 1,

λQ = {q ∈ R`|λ−1q ∈ Q}.
The next axiom is very weak since it allows the radial factor λ to be arbitrarily
large.

IIA with Indifference Sets on Expanded Feasible Allocations (IIA-
ISEFA): ∃λ ≥ 1,∀x, y ∈ Rn`

+ , ∀R,R0 ∈ Rn, if ∀i ∈ N, I(xi, Ri) ∩
λΩ(ω(x, y)) = I(xi, R

0
i) ∩ λΩ(ω(x, y)), I(yi, Ri) ∩ λΩ(ω(x, y)) = I(yi, R

0
i) ∩

λΩ(ω(x, y)), then xR̄(R)y ⇔ xR̄(R0)y.

A second way of extending the information about indifference sets is to
rely on a path

Λω0 = {λω0 ∈ R`
++|λ ∈ R+},

where ω0 ∈ R`
++ is fixed, and to focus on the part of the indifference sets

which belongs to this path. The idea of referring to such a path has been
introduced by Pazner and Schmeidler (1978), and may be justified if the path
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contains relevant benchmark bundles. The choice of ω0 is not discussed here,
but it need not be arbitrary. For instance, one may imagine that it could rely
on appropriate equity conditions.

IIA with Indifference Sets on Path ω0 (IIA-ISPω0): ∀x, y ∈ Rn`
+ ,

∀R,R0 ∈ Rn, if ∀i ∈ N, I(xi, Ri) ∩ Λω0 = I(xi, R
0
i) ∩ Λω0 , I(yi, Ri) ∩ Λω0 =

I(yi, R
0
i) ∩ Λω0 , then xR̄(R)y ⇔ xR̄(R0)y.

The last extension of informational basis that we consider is to introduce
whole indifference hypersurfaces. This condition was already introduced and
studied by Hansson (1973) in the abstract model of social choice, who showed
that the Borda rule satisfies it.

IIA with Whole Indifference Sets (IIA-WIS): ∀x, y ∈ Rn`
+ , ∀R,R0 ∈

Rn, if ∀i ∈ N, I(xi, Ri) = I(xi, R
0
i), I(yi, Ri) = I(yi, R

0
i), then xR̄(R)y ⇔

xR̄(R0)y.

Lemma 2 For all ε > 0,

IIA-εN
⇑

IIA =⇒
 IIA-MRS
IIA-ISFA⇒ IIA-ISEFA

IIA-ISPω0

 ⇒ IIA-WIS.

2.3 Independence of Irrelevant Alternatives for Allo-
cation Rules

IIA is an axiom for SOFs. It is not obvious how one can translate this
for ARs. One way is to consider ARs as two-tier SOFs. Recall that the
conclusion of IIA axioms for SOFs can be written

xP̄ (R)y ⇔ xP̄ (R0)y.

In the case of ARs, xP̄ (R)y reads:

x ∈ S(R) and y /∈ S(R).
This suggests a direct translation of the above IIA family of axioms.6

6We actually make a slight change, by applying the IIA axioms for ARs to allocations
in F only. This makes the axioms slightly weaker, and we chose to do this because it is
interesting to check that our results do not depend on considering infeasible allocations.
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Independence of Irrelevant Alternatives (IIA): ∀x, y ∈ F, ∀R,R0 ∈
Rn, if ∀i ∈ N, xiRiyi ⇔ xiR

0
iyi, then [x ∈ S(R) and y /∈ S(R)]⇔ [x ∈ S(R0)

and y /∈ S(R0)].

IIA with Marginal Rates of Substitution (IIA-MRS): ∀x, y ∈ F,
∀R,R0 ∈ Rn, if ∀i ∈ N, xiRiyi ⇔ xiR

0
iyi and C(xi, Ri) = C(xi, R

0
i),

C(yi, Ri) = C(yi, R
0
i), then [x ∈ S(R) and y /∈ S(R)] ⇔ [x ∈ S(R0) and

y /∈ S(R0)].

IIA with Indifference Sets on Feasible Allocations (IIA-ISFA):
∀x, y ∈ F, ∀R,R0 ∈ Rn, if ∀i ∈ N, I(xi, Ri) ∩ Ω(ω) = I(xi, R

0
i) ∩ Ω(ω),

I(yi, Ri) ∩ Ω(ω) = I(yi, R
0
i) ∩ Ω(ω), then [x ∈ S(R) and y /∈ S(R)]

⇔ [x ∈ S(R0) and y /∈ S(R0)].

IIA with Whole Indifference Sets (IIA-WIS): ∀x, y ∈ F, ∀R,R0 ∈ Rn,
if ∀i ∈ N, I(xi, Ri) = I(xi, R

0
i), I(yi, Ri) = I(yi, R

0
i), then [x ∈ S(R) and

y /∈ S(R)] ⇔ [x ∈ S(R0) and y /∈ S(R0)].

Notice that an axiom based on the path ω0 would not make sense here
because the condition

I(xi, Ri) ∩ Λω0 = I(xi, R
0
i) ∩ Λω0

would not guarantee that x remains Pareto-efficient.
Consider the AR SR̄ related to a SOF R̄ in the following way: for all

R ∈ Rn,
SR̄(R) = {x ∈ F | ∀y ∈ Z, xR̄(R)y}.

It is worth noticing that even if R̄ satisfies IIA for SOFs, and SR̄ is well-
defined (that is, SR̄(R) 6= ∅ for all R ∈ Rn), SR̄ need not satisfy IIA for
ARs, although it must satisfy the following condition whenever the premiss
of IIA holds:

x ∈ SR̄(R) and y /∈ SR̄(R)⇒ y /∈ SR̄(R0).

For instance, fix two allocations x∗, y∗ ∈ F and let R̄ be defined by: for all
R ∈ Rn,

x∗R̄(R)y∗ ⇔ x∗1R1y
∗
1

and for all x, y ∈ Rn`
+ \ {x∗, y∗}, xĪ(R)y and x∗P̄ (R)x, y∗P̄ (R)x. One can

see that R̄ satisfies IIA for SOFs, but SR̄ does not satisfy IIA for ARs.
The same fact is true about all weaker IIA axioms.
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Another way to look at independence conditions for ARs is to imagine
independence conditions that bear only on one allocation. That would yield
the following family of axioms. The first one is very strong, but it seems that
the usual premise in IIA does not put any local constraint on x, and it will
be shown later on that it is actually equivalent to IIA.

Independence of Preferences (IP): ∀x ∈ Rn`
+ , ∀R,R0 ∈ Rn, if x ∈ S(R),

then x ∈ S(R0).

The next one, dealing with marginal rates of substitution, is essentially
Nagahisa’s (1991) ‘Local Independence’:7

Independence of Preferences except MRS (IP-MRS): ∀x ∈ Rn`
+ ,

∀R,R0 ∈ Rn, if x ∈ S(R) and for all i ∈ N, C(xi, Ri) = C(xi, R
0
i), then

x ∈ S(R0).

The next axiom says that only the part of indifference sets concerning
feasible allocations should matter.

Independence of Preferences except Indifference Sets on Feasible
Allocations (IP-ISFA): ∀x ∈ Rn`

+ , ∀R,R0 ∈ Rn, if x ∈ S(R) and for all
i ∈ N, I(xi, Ri) ∩ Ω (ω) = I(xi, R0i) ∩ Ω (ω) , then x ∈ S(R0).

Notice that this axiom is stronger than an axiom suggested by Le Breton
(1997),8 which states that only preferences over feasible allocations should
matter:

Independence of Preferences except Feasible Bundles (IP-FB):
∀R,R0 ∈ Rn, if ∀x, y ∈ F,∀i ∈ N, xiRiyi ⇔ xiR

0
iyi, then S(R) = S(R

0).
7See also Yoshihara (1998).
8Le Breton’s synthesis of the theory of social choice and the theory of fair allocation (Le

Breton, 1997) is symmetrical to ours, and is based on the idea that a SOF can be viewed
as a particular kind of AR (choice correspondence) defined over a rich set of agendas
(an agenda is a subset of alternatives from which the AR makes selections), typically
the set of all finite subsets of allocations. In his synthesis, the theory of fair allocation
is characterized by the facts that the preferences domain of ARs is restricted, and that
the agendas domain is restricted as well to have some specific structures (for instance,
the Edgeworth box). The axiom IP-FB embodies the choice theoretical version of Arrow
independence in this framework. One can see that under this independence condition, a
larger agenda allows ARs to use more information about preferences when deciding the
set of selected allocations. However, that framework seems less convenient than ours in
order to address the question of what information be retained when comparing a given
pair of allocations.
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The last axiom is due to Maniquet (1994).

Independence of Preferences except Whole Indifference Sets (IP-
WIS): ∀x ∈ Rn`

+ , ∀R,R0 ∈ Rn, if x ∈ S(R) and for all i ∈ N, I(xi, Ri) =
I(xi, R

0
i), then x ∈ S(R0).

Although these independence of preferences axioms may seem extremely
restrictive, they are actually not really stronger than the previous IIA axioms.

Lemma 3 IP⇔IIA. On the class of ARs that never select x ∈ F with xi = ω
for some i, or are essentially single-valued, IP-MRS⇔IIA-MRS.

Proof. IP⇔IIA. It is obvious that IP⇒IIA. For the converse, choose any
i0 and define x0 by x0

i0
= ω (and x0

i = 0 for all i 6= i0). If for all R one has
S(R) = F then IP is satisfied. Suppose then that this is not the case, and
let R be such that S(R) 6= F.
First case: x0 ∈ S(R). Take any y /∈ S(R). By monotonicity of prefer-

ences, for all R0,
∀i ∈ N, yiRix0

i ⇔ yiR
0
ix

0
i .

Therefore x0 ∈ S(R0) and y /∈ S(R0). The latter implies F \S(R) ⊂ F \S(R0).
Since x0 ∈ S(R0), one can show by a symmetrical argument that F \S(R0) ⊂
F \ S(R) implying S(R0) = S(R).
Second case: x0 /∈ S(R). Take any x ∈ S(R). By monotonicity of prefer-

ences, for all R0,
∀i ∈ N,xiRix0

i ⇔ xiR
0
ix

0
i .

Therefore x0 /∈ S(R) and x ∈ S(R0), and more generally S(R) ⊂ S(R0). By
a symmetrical argument based on x0 /∈ S(R0), one shows that S(R0) ⊂ S(R).
IP-MRS⇔IIA-MRS. It is obvious that IP-MRS⇒IIA-MRS. For the con-

verse, let x ∈ S(R) and R0 be such that for all i, C(xi, R0i) = C(xi, Ri).
First case: S never selects allocations where some agent has ω. Choose

y, z ∈ F such that y1 = z2 = ω. By strict monotonicity of preferences,
there exists R00 ∈ Rn such that for all i, C(xi, R00i ) = C(xi, Ri), C(yi, R

00
i ) =

C(yi, Ri), C(zi, R
00
i ) = C(zi, R

0
i). Because y1 = ω, y /∈ S(R). By IIA-MRS,

x ∈ S(R00) and y /∈ S(R00). Because z2 = ω, z /∈ S(R00). And by IIA-MRS
again, x ∈ S(R0) and z /∈ S(R0).
Second case: S is essentially single-valued. Choose y, z ∈ F such that for

all i, for all a, b ∈ {xi, yi, zi}, a 6= b, either aÀ b or a¿ b. By monotonicity
of preferences, there existsR00 ∈ Rn such that for all i, C(xi, R00i ) = C(xi, Ri),

12



C(yi, R
00
i ) = C(yi, Ri), C(zi, R

00
i ) = C(zi, R

0
i). By essential single-valuedness

of S and monotonicity of preferences, y /∈ S(R). By IIA-MRS, x ∈ S(R00)
and y /∈ S(R00). By essential single-valuedness again, z /∈ S(R00). And by
IIA-MRS again, x ∈ S(R0) and z /∈ S(R0).

Notice that in the proof of the second equivalence, one only needs to find
allocations which are not selected by the AR for two profiles with the same
MRS at the allocations. We also have similar results for the ISFA and WIS
versions of the axioms.

3 Social Ordering Functions Need Indiffer-
ence Curves

Let us first recall the formulation of Arrow’s theorem for this model (Bordes
and Le Breton 1989).

Proposition 1 If a SOF R̄ satisfies Weak Pareto and IIA, then it is dicta-
torial.

It turns out, unfortunately, that introducing information about marginal
rates of substitution, in addition to pairwise preferences, does not make room
for the existence of satisfactory SOFs. More formally, weakening IIA to IIA-
MRS does not alter the dictatorship conclusion of Arrow’s theorem.

Proposition 2 If a SOF R̄ satisfies Weak Pareto and IIA-MRS, then it is
dictatorial.

The proof of this Proposition is long and is relegated to the appendix.
Inada (1964, 1971) also considered marginal rates of substitution in an

IIA-like axiom, but the difference from our work is that he looked for a lo-
cal aggregator of preferences, namely a mapping defining a social marginal
rate of substitution between goods and individuals, on the basis of individual
marginal rates of substitution. The global SOF was then obtained by inte-
grating the social marginal rates of substitution. Therefore his independence
condition was somewhat weaker since the social preference over two given
alternatives could depend on all marginal rates of substitution over paths
going from the first alternative to the second one. On the other hand, we do
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not require differentiability of the social ordering, so that our result is not
logically related to Inada’s one.
The next proposition shows that as soon as one switches from IIA-MRS

to IIA-εN, the dictatorship result is avoided, even for an arbitrarily small ε,
although it remains impossible to achieve Anonymity, even for an arbitrarily
large ε. Moreover, for a small ε, the non-dictatorial example given in the
proof remains dictatorial for most allocations, and one can safely conjecture
that any SOF which satisfies Weak Pareto and IIA-εN is largely dictatorial,
because under IIA-εN there are many free triples.

Proposition 3 Let ε > 0 be given. There exists a non-dictatorial SOF
satisfying Weak Pareto and IIA-εN. However, there does not exist a SOF
satisfying Weak Pareto, IIA-εN and Anonymity.

Proof. For the possibility result, define R̄ as follows: xR̄(R)y if either
x1R1y1 and [{z ∈ R`

+|x1R1z} * Bε(0) or {z ∈ R`
+|y1R1z} * Bε(0)], or

x2R2y2 and [{z ∈ R`
+|x1R1z} ⊆ Bε(0) and {z ∈ R`

+|y1R1z} ⊆ Bε(0)]. For
brevity, let Γ(v) denote

£{z ∈ R`
+|vR1z} ⊆ Bε(0)

¤
. Weak Pareto and the

absence of dictator are straightforwardly satisfied. IIA-εN is also satisfied
because when Γ(x1) and Γ(y1) hold, one has Bε(0) ⊆ Bε(x1) ∩ Bε(y1), and
therefore Γ(x1) and Γ(y1) remain true if preferences are kept fixed on Bε(x1)
and Bε(y1). It remains to check transitivity of R̄(R). First note the following
property. If Γ(v) and vR1v

0, then Γ(v0). Assume that there exist x, y, z ∈ Rn`
+

such that xR̄(R)yR̄(R)zP̄ (R)x. If Γ(x1) and Γ(y1) and Γ(z1), this is im-
possible because one should have x2R2y2R2z2P2x2. If only one of the three
conditions Γ(x1),Γ(y1),Γ(z1) is satisfied, it is similarly impossible because one
should have x1R1y1R1z1P1x1. Assume Γ(x1) and Γ(y1) hold, but not Γ(z1).
Then yR̄(R)zP̄ (R)x requires y1R1z1P1x1, which implies Γ(z1), a contradic-
tion. Assume Γ(x1) and Γ(z1) hold, but not Γ(y1). Then xR̄(R)yR̄(R)z
requires x1R1y1R1z1, which implies Γ(y1), a contradiction. Assume Γ(y1)
and Γ(z1) hold, but not Γ(x1). Then zP̄ (R)xR̄(R)y requires z1P1x1R1y1,
which implies Γ(x1), a contradiction.
The proof of the impossibility is very similar to that of Proposition 4 and

is omitted here.

With the introduction of non-local information about indifference curves,
one is also able to avoid dictatorship, but incompatibility with Anonymity
remains. The result is important because no SOF violating Anonymity will
ever be considered acceptable.
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Proposition 4 There exists a non-dictatorial SOF satisfying Weak Pareto,
IIA-ISFA. However, there does not exist a SOF satisfying Weak Pareto, IIA-
ISEFA and Anonymity.

The proof is in the appendix.
From Pazner and Schmeidler’s (1978) contribution one can derive the

following result, which shows that not much information is needed, although
it must be substantially non-local.

Proposition 5 There exists a SOF satisfying Weak Pareto, IIA-ISPω0 and
Anonymity.

Proof. By continuity and monotonicity of preferences, the following utility
functions

ui(xi) = min{α ∈ R+|αω0Rixi}
are well-defined and represent preferences Ri. Let R̄ be defined by: xR̄(R)y
whenever

min{ui(xi)|i ∈ N} ≥ min{ui(yi)|i ∈ N}.
This SOF clearly satisfies Weak Pareto and Anonymity. It also satisfies IIA-
ISPω0 because when I(xi, Ri) ∩ Λω0 = I(xi, R

0
i) ∩ Λω0, one has

min{α ∈ R+|αω0Rixi} = min{α ∈ R+|αω0R
0
ixi}.

Notice that one could have the Strong Pareto property9 as well by relying
on the leximin criterion rather than the maximin for the SOF defined in the
above proof. There are also many examples of SOFs satisfying Weak Pareto,
IIA-WIS and Anonymity. Thus, in addition to these three axioms, one may
add other requirements embodying various equity principles.10

9Strong Pareto for SOFs: ∀x, y ∈ Rn`
+ ,∀R ∈ Rn if ∀i ∈ N, xiRiyi, then xR̄(R)y

and if, in addition, ∃i ∈ N, xiPiyi, then xP̄ (R)y.
10Notice that Strong Pareto and Anonymity already entail a version of the Suppes

grading principle: for all R ∈Rn, all x, y, if there are i, j such that Ri = Rj , xiPiyj and
xjPiyi, and for h 6= i, j, xh = yh, then xP̄ (R)y. Notice also that it is easy to construct
SOFs satisfying Strong Pareto, IIA-WIS (or IIA-ISPω0), Anonymity and the following
version of the Hammond equity axiom (Hammond, 1976), which is similar to the Equal
Treatment of Equals axiom for ARs: for all R ∈Rn, and all x, y ∈ Rn`

+ , if there are i, j
such that Ri = Rj , yiPixiPixjPiyj , and for h 6= i, j, xh = yh, then xP̄ (R)y.
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4 Allocation Rules Need Marginal Rates of
Substitution

For allocation rules, we first obtain a parallel to Arrow’s theorem, although,
strictly speaking, there is a possibility result even with the strongest form of
IIA and Anonymity.

Proposition 6 If S satisfies Pareto, IIA and Anonymity, then

∀R ∈ Rn, S(R) = {x ∈ Rnl
+ |∃i ∈ N, xi = ω}.

If S satisfies Pareto, IIA and is essentially single-valued, then it is dictatorial.

Proof. By Lemma 3, IIA⇔IP. By Pareto and IP, S(R) must contain only
allocations such that

∃i ∈ N, xi = ω

because for any other allocation y, one can find R0 such that y /∈ E(R).
By IP, for all R,R0 ∈ Rn,

{i ∈ N |∃x ∈ S(R), xi = ω} = {i ∈ N |∃x ∈ S(R0), xi = ω}.
Therefore Anonymity requires {i ∈ N |∃x ∈ S(R), xi = ω} = N, whereas
essential single-valuedness requires {i ∈ N |∃x ∈ S(R), xi = ω} = i0 for some
fixed i0.
It can also be immediately deduced from the proof that there does not

exist an AR satisfying Pareto, IIA, and Equal Treatment of Equals.
The next result is that with IIA-MRS, Equal Treatment of Equals

becomes attainable, but there remains a difficulty with essential single-
valuedness.

Proposition 7 There exists an AR satisfying Pareto, IIA-MRS,
Anonymity, and Equal Treatment of Equals. There exists a non-dictatorial
and essentially single-valued AR satisfying Pareto, IIA-MRS. However, there
does not exist an essentially single-valued AR satisfying Pareto, IIA-MRS
and Anonymity.

Proof. The first possibility is illustrated by the Egalitarian Walrasian AR
SW , defined as follows: x ∈ SW (R) if x ∈ F and there is p ∈ R`

++ such that
for all i ∈ N,

∀y ∈ R`
+, p · y ≤ p · ω/n⇒ xiRiy.
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The second possibility is illustrated by the AR Sp0 defined for a given
p0 ∈ R`

++ as follows: if p0 ∈ C(ω, R1), then S(R) = {x} where x1 = ω, and
otherwise, S(R) = {y} where y2 = ω.
For the impossibility, recall that by essential single-valuedness of S and

Lemma 3, IIA-MRS⇔IP-MRS. LetR∗ be the subset ofR such for allR ∈ R∗,
R is differentiable, and moreover:

∀z ∈ R`
++, z

0 ∈ R`
+ÂR`

++, zPz
0.

Let R ∈ R∗n
be given. Assume that there is x ∈ S(R) \ SW (R). By Pareto

x ∈ E(R). Hence, we have xi ∈ R`
++ or xi = 0 for all i, and there is a shadow

price vector p ∈ R`
++ such that

∀i ∈ N, C(xi, Ri) = {p} or xi = 0.

For this p, define Rp ∈ R by

∀z, z0 ∈ R`
+, zR

pz0 ⇔ p · z ≥ p · z0.

LetRp = (Rp, ..., Rp) ∈ Rn. By IP-MRS, x ∈ S(Rp). Since x /∈ SW (R), there
exist i, j, xiP pxj , in contradiction to Equal Treatment of Equals. (Recollect
that, by Lemma 1, essential single-valuedness and Anonymity imply Equal
Treatment of Equals.) As a consequence, S(R) ⊂ SW (R).
Assume there is x ∈ SW (R) \ S(R). For all i ∈ N, let R0i ∈ R∗ be

homothetic and strictly convex preferences satisfying

C(xi, R
0
i) = C(xi, Ri).

Let R0= (R01, ..., R
0
n) ∈ R∗n

. We have x ∈ SW (R0). Moreover, by Th. 1
in Eisenberg (1961), all allocations in SW (R0) are Pareto-indifferent. By
strict convexity of preferences, one therefore has SW (R0) = {x}. Since
S(R0) ⊂ SW (R

0), we have S(R0) = {x}. By IP-MRS, x ∈ S(R), which
is a contradiction. Therefore SW (R) ⊂ S(R).
In conclusion, S(R) = SW (R) for any profile R ∈ R∗n

. But we can find
a profile R ∈ R∗n

such that SW (R) contains two allocations x, y, and there
exists i with xiPiyi. This contradicts essential single-valuedness.

One can adapt the proof in order to show that the impossibility would
not be removed by considering ε-neighborhoods instead of MRS, for ε small
enough. Only with IIA-ISFA do we really obtain a full possibility result.
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Proposition 8 There exists an essentially single-valued AR satisfying
Pareto, IP-ISFA and Anonymity.

Proof. Let R ∈ Rn, ω ∈ R`
++ be given. One defines S by: x ∈ S(R) if

x ∈ E(R) and there is α ∈ R+ such that for all i ∈ N,

xiIiαω.

It obviously satisfies Pareto and Anonymity. To check that it satisfies IP-
ISFA, notice that necessarily α < 1, so that αω ∈ Ω (ω) .

Notice that the AR described in the proof also satisfies Equal Treatment
of Equals (by Lemma 1). And there are many examples of ARs satisfying
Pareto, Anonymity and IP-WIS. In fact all the main ARs from the theory of
fair allocation satisfy IP-WIS.

5 Conclusion
In a framework with purely ordinal, non-comparable preferences, a satisfac-
tory social ordering function requires, when ranking any pair of allocations,
information about the shape of indifference curves that goes well beyond
purely local data such as marginal rates of substitution and preferences in ε-
neighborhood. This is the first lesson of this paper. The second is that even
for less demanding allocation rules, it is also necessary to introduce more
information than what is allowed in the Arrow independence of irrelevant
alternatives. The third is that, nonetheless, a purely local information such
as marginal rates of substitution is sufficient for allocation rules, whereas it
is not for social ordering functions.
We hope that our paper, more broadly, contributes to clarifying the in-

formational foundations in the theory of social choice and in the theory of
fair allocation, and also to clarifying the links and differences between these
two theories.
There are limits to our work which should be emphasized here, and call

for further research. First, we study a particular model, and it would be
worth analyzing the same issues in other models such as the standard ab-
stract model of social choice or other economic models, in particular models
with public goods (the case of consumption externalities in our model could
also be subsumed under the case of public goods). Second, the information
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about indifference curves is a complex set of objects and our analysis is far
from being exhaustive on the pieces of data which can extracted from this
set. For instance, it would be nice to have a measure of the degree to which a
given piece of information is local. Third, there may be other kinds of inter-
esting additional information. For instance, Roberts (1980) has considered
introducing information about utilities and about non-local preferences at
the same time, and was able to characterize the Nash social welfare function
on this basis. There certainly are many avenues of research along these lines.
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7 Appendices

7.1 Proof of Proposition 2

The proof of Proposition 2 relies on the following lemmas.
Let Y ⊂ X be a given finite subset of X. Let i ∈ N be given. Let Yi =

{yi ∈ R`
+| ∃y−i ∈ R(n−1)`

+ , (yi, y−i) ∈ Y }. For each yi ∈ Yi, let Q(yi) ⊂ R`
++

be given. We say that the set Yi satisfies the supporting condition with the
supporting price vectors {Q(yi)| yi ∈ Yi} if for all yi ∈ Yi, all q ∈ Q(yi), and
all y0i ∈ Yi with y0i 6= yi, q · yi < q · y0i. Let

R(Yi, {Q(yi)| yi ∈ Yi}) = {Ri ∈ R| ∀yi ∈ Yi, C(yi, Ri) = Q(yi)}.
The set of all preorderings on Yi is denoted by O(Yi). For any Ri ∈ R, Ri|Yi

denotes the restriction of Ri on Yi11. For anyR0⊂ R, letR0|Yi
= {Ri|Yi

| Ri ∈
R0}. For any xi ∈ X and any Ri ∈ R, let U(xi, Ri) = { x0i ∈ X | x0i Ri xi }
denote the (weak) upper contour set of xi for Ri.

Lemma 4 If a finite set Yi ⊂ R`
+ satisfies the supporting condition with the

supporting price vectors {Q(yi)| yi ∈ Yi}, then R(Yi, {Q(yi)|yi ∈ Yi})|Yi
=

O(Yi).
Proof. We need to show that O(Yi) ⊆ R(Yi, {Q(yi)|yi ∈ Yi})|Yi

. Let R0

∈ O(Yi) be any preordering on Yi. Construct a preordering Ri ∈ R so that
the upper contour set of each yi ∈ Yi is defined as follows. Let xi ∈ Yi be
such that for all yi ∈ Yi, yi R0i xi. Let Y 1

i = {yi ∈ Yi | yi I 0i xi}. Let
U(xi, Ri) =

\
yi∈Y 1

i

\
q∈Q(yi)

{x0i ∈ R`
+ | q · x0i ≥ q · yi}

Let I(xi, Ri) be the boundary of U(xi, Ri). Clearly, for all yi ∈ Y 1
i , C(yi, Ri)

= Q(yi).We also have that for all yi ∈ Yi\Y 1
i , and for all x

0
i ∈ I(xi, Ri), yi Pi

x0i. Given ε > 0, let εU(xi, Ri) = {x0i ∈ R`
+ | ∃ai ∈ U(xi, Ri), x0i = εai}, and

let εI(xi, Ri) be the boundary of εU(xi, Ri). For sufficiently small ε, we have
that for all yi ∈ Yi\Y 1

i , and for all x
0
i ∈ εI(xi, Ri), yiPix0i. Let zi ∈ Yi\Y 1

i be
such that for all yi ∈ Yi\Y 1

i , yi R
0
i zi. Let Y

2
i = {yi ∈ Yi\Y 1

i | yi I 0i zi}. Let

U(zi, Ri) = εU(xi, Ri)
\ \

yi∈Y 2
i

\
q∈Q(yi)

{x0i ∈ R`
+ | q · x0i ≥ q · yi}


11Namely, Ri|Yi is the preordering on Yi such that for all xi, yi ∈ Yi, xi Ri|Yi yi ⇐⇒

xiRiyi.
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Let I(zi, Ri) be the boundary of U(zi, Ri). By definition, for all yi ∈ Y 2
i ,

C(yi, Ri) = Q(yi). We have that for all yi ∈ Yi\(Y 1
i ∪ Y 2

i ) , and for all
x0i ∈ I(zi, Ri), yi Pi x0i. In the same way as above, we can construct the
upper contour set of each yi ∈ Yi\(Y 1

i ∪ Y 2
i ) . By its construction, Ri ∈

R(Yi, {Q(yi)|yi ∈ Yi}) and Ri|Yi
= R0. Thus, R0 ∈ R(Yi, {Q(yi)|yi ∈ Yi})|Yi

.

Let R̄ be a social ordering function. Let Y ⊆ X and R0 ⊆ Rn be given.
We say that agent i0 ∈ N is a local dictator for R̄ over (Y,R0) if for all
x, y ∈ Y , and all R ∈ R0, xi0Pi0yi0 implies xP̄ (R)y.
Lemma 5 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. Let Y ⊂ X be a finite subset of X such that |Y | ≥ 3.12 Suppose
that for all i ∈ N , Yi satisfies the supporting condition with the supporting
price vectors {Q(yi)| yi ∈ Yi}. Then, there exists a local dictator i0 ∈ N for
R̄ over (Y,

Q
i∈N R(Yi, {Q(yi)| yi ∈ Yi})).

Proof. For all R,R0 ∈ Qi∈N R(Yi, {Q(yi)| yi ∈ Yi}), all y ∈ Y, and all
i ∈ N, C(yi, Ri) = C(yi, R

0
i). Since R̄ satisfies IIA-MRS, we have that for

all x, y ∈ Y, and all R,R0 ∈ Qi∈N R(Yi, {Q(yi)| yi ∈ Yi}), if for all i ∈
N, xiRiyi ⇔ xiR

0
iyi, then xR̄(R)y ⇔ xR̄(R0)y. By Lemma 4, for all i ∈

N,R(Yi, {Q(yi)|yi ∈ Yi})|Yi
= O(Yi). Hence, by Arrow’s Theorem, there

exists a local dictator for R̄ over (Y,
Q
i∈N R(Yi, {Q(yi)| yi ∈ Yi})).

We say that a subset Y of X is free for agent i if R|Yi
= O(Yi). It is

free if it is free for all i ∈ N. If Y contains two elements, it is a free pair.
If Y contains three elements, it is a free triple. Note that a set {x, y} is a
free pair for i ∈ N if and only if for some k, k0 ∈ {1, · · · , `}, xik > yik and
yik0 > xik0 . Given two consumption bundles xi, yi ∈ R`

+, define xi ∧ yi ∈ R`
+

as (xi ∧ yi)k = min{xik, yik} for all k ∈ {1, · · · , `}.
Lemma 6 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. If {x, y} ⊂ X is a free pair, then there exists a local dictator for
R̄ over ({x, y},Rn).

Proof. Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. Let {x, y} ⊂ X be a free pair. Let

K1 = {k ∈ {1, · · · , `} | xik > yik}
K2 = {k ∈ {1, · · · , `} | xik < yik}

12Given a set A, |A| denotes the cardinality of A.
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Since {x, y} is a free pair, K1, K2 6= ∅.
Step 1 : For each i ∈ N , we define two consumption bundles zi, wi ∈ X as
follows:

zi = xi ∧ yi + 1
2

½
2

3
(xi − xi ∧ yi) + 1

3
(yi − xi ∧ yi)

¾
(1)

wi = xi ∧ yi + 1
2

½
1

3
(xi − xi ∧ yi) + 2

3
(yi − xi ∧ yi)

¾
(2)

Figure 1 illustrates the bundles xi, yi, xi ∧ yi, zi, wi, and also bi, vi, ti, which
are defined in the next step. Let q ∈ R`

++. Then, q · yi < q · wi if and only if
2

3

X
k∈K2

qk(yik − xik) < 1

6

X
k∈K1

qk(xik − yik) (3)

Since K1 6= ∅, the right-hand-side of (3) can be arbitrarily large as (qk)k∈K1

become large, (qk)k∈K2 being constant. Hence, there exists a price vector
q(yi) ∈ R`

++ that satisfies inequality (3). With some calculations, it can be
shown that q(yi) · yi < q(yi) · zi and q(yi) · yi < q(yi) · xi.
Similarly, for each a ∈ {xi, zi, wi}, we can find a price vector q(a) ∈ R`

++

such that for all a0 ∈ {xi, zi, wi, yi} with a0 6= a, q(a) ·a < q(a) ·a0. Hence, the
set Y 0

i = {xi, zi, wi, yi} satisfies the supporting condition with the supporting
price vectors {q(xi), q(zi), q(wi), q(yi)}.13
Let z = (zi)i∈N and w = (wi)i∈N . Let Y 0 = {x, z, w, y}.

By Lemma 5, there exists a local dictator i0 ∈ N for R̄ over
(Y 0,

Q
i∈N R(Y 0

i , {q(xi), q(zi), q(wi), q(yi)}).
Step 2: We will show that agent i0 is a local dictator for R̄ over ({x, y},Rn).
Suppose, on the contrary, that there exists a preference profile R0 ∈ Rn

such that (i) xi0P
0
i0
yi0 and yR̄(R

0)x or (ii) yi0P
0
i0
xi0 and xR̄(R

0)y. Without
loss of generality, suppose that (i) holds. Let Y 1 = {z, w, y}. Since agent i0 is
the local dictator for R̄ over (Y 0,

Q
i∈N R(Y 0

i , {q(xi), q(zi), q(wi), q(yi)}), he
is also the local dictator for R̄ over (Y 1,

Q
i∈N R(Y 1

i , {q(zi), q(wi), q(yi)}).
(Otherwise, by Lemma 5, there exists a local dictator j 6= i0
for R̄ over (Y 1,

Q
i∈N R(Y 1

i , {q(zi), q(wi), q(yi)}), and we can con-
struct a preference profile R ∈ Q

i∈N R(Y 0
i , {q(xi), q(zi), q(wi), q(yi)}) ⊂Q

i∈N R(Y 1
i , {q(zi), q(wi), q(yi)}) such that zi0Pi0wi0 and wjPjzj . Hence we

must have zP̄ (R)w and wP̄ (R)z, which is a contradiction.)
13With a slight abuse of notation, we write {q(wi), q(zi), q(yi)} for

{{q(wi)}, {q(zi)}, {q(yi)}}.
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We define two allocations v, t ∈ X in the following steps. Let i ∈ N . First,
define bi ∈ R`

+ as follows: If for all q ∈ C(xi, R0
i ), q · (yi − xi) ≥ 0, then let

bi = yi. If for some q ∈ C(xi, R0
i ), q ·(yi−xi) < 0, then let θ > 0 be a positive

number such that for all q ∈ C(xi, R0
i ), q · {yi + θ(yi − xi ∧ yi)− xi} > 0.

Since q ∈ R`
++ by strict monotonicity of preferences, and yi − xi ∧ yi > 0,

such a number θ exists. Then, define bi = yi + θ(yi − xi ∧ yi). By definition,
bi > yi, and for all q ∈ C(xi, R0

i ), q · (bi − xi) > 0. Let
vi = bi + 2(bi − xi ∧ yi)

Then, vi > bi > yi, and for all q ∈ C(xi, R0
i ), q · (vi − xi) > 0.

Next, let

ti = xi ∧ yi + 1
2

½
2

3
(vi − xi ∧ yi) + 1

3
(wi − xi ∧ yi)

¾
Then,

ti = bi +
1

6
(wi − xi ∧ yi) > bi

and for all q ∈ C(xi, R0
i ), q · xi < q · ti.

As in Step 1, we can find price vectors q(vi), q(ti) ∈ R`
++ such that q(vi) ·

vi < q(vi) · a for all a ∈ {xi, zi, wi, ti}, and q(ti) · ti < q(ti) · a for all a ∈
{xi, zi, wi, vi}.
On the other hand, because vi > yi and ti > yi, we have that q(zi) · zi <

q(zi) · a for all a ∈ {ti, vi}, and q(wi) · wi < q(wi) · a for all a ∈ {ti, vi}.
So far we have shown that

(i) the set Y 1
i = {xi, ti, vi} satisfies the supporting condition with the sup-

porting price vectors {C(xi, R0
i ), q(ti), q(vi)}.

(ii) the set Y 2
i = {zi, wi, ti, vi} satisfies the supporting condition with the

supporting price vectors {q(zi), q(wi), q(ti), q(vi)}.
Let v = (vi)i∈N and t = (ti)i∈N . Let Y 1 = {x, t, v} and Y 2 =

{z, w, t, v}. By Lemma 5, there exist a local dictator i1 ∈ N for R̄ over
(Y 1,

Q
i∈N R(Y 1

i , {C(xi, R0
i ), q(ti), q(vi)}), and a local dictator i2 ∈ N for R̄

over (Y 2,
Q
i∈N R(Y 2

i , {q(zi), q(wi), q(ti), q(vi)}). Recall that agent i0 ∈ N is
the local dictator for R̄ over (Y 0,

Q
i∈N R(Y 0

i , {q(zi), q(wi), q(yi)}). Let R1 ∈
Rn be a preference profile such that for all i ∈ N , C(xi, R1

i ) = C(xi, R
0
i ),

and for all ai ∈ {ti, vi, wi, yi, zi}, C(ai, R1
i ) = {q(ai)}, and such that

xi0P
1
i0
zi0P

1
i0
wi0P

1
i0
ti0P

1
i0
vi0P

1
i0
yi0

and for all i ∈ N with i 6= i0, xiP 1
i viP

1
i tiP

1
i wiP

1
i ziP

1
i yi
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Since R1 ∈Qi∈N R(Y 0
i , {q(zi), q(wi), q(yi)}, and agent i0 is the local dictator

for R̄ over (Y 0,
Q
i∈N R(Y 0

i , {q(zi), q(wi), q(yi)}), we have zP̄ (R1)w. Because
R1 ∈ Qi∈N R(Y 2

i , {q(zi), q(wi), q(ti), q(vi)}, this implies that i0 = i2. Hence,
we have tP̄ (R1)v. Since R1 ∈ Qi∈N R(Y 1

i , {C(xi, R0
i ), q(ti), q(vi)}, it follows

that i0 = i1.
Let R2 ∈ Rn be a preference profile such that xi0P

2
i0
vi0 and for all

i ∈ N , R2
i |{xi,yi} = R0

i |{xi,yi}, and C(xi, R
2
i ) = C(xi, R

0
i ), C(ti, R

2
i ) =

{q(ti)}, C(vi, R2
i ) = {q(vi)} and C(yi, R2

i ) = C(yi, R
0
i ). Since agent i0 ∈ N

is the local dictator for R̄ over (Y 1,
Q
i∈N R(Y 1

i , {C(xi, R0
i ), q(ti), q(vi)}), we

have that xP̄ (R2)v. Recall that for all i ∈ N , vi > yi. Hence, by strict
monotonicity of preferences, viP 2

i yi for all i ∈ N . Because the social order-
ing function R̄ satisfies Weak Pareto, we have vP̄ (R2)y. By transitivity of
R̄, xP̄ (R2)y. However, since R̄ satisfies IIA-MRS, and yR̄(R0)x, we must
have yR̄(R2)x. This is a contradiction.

Lemma 7 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. If {x, y, z} ⊂ X is a free triple, then there exists a local dictator
for R̄ over ({x, y, z},Rn).

Proof. By Lemma 6, there exist a local dictator i0 over ({x, y},Rn), , a local
dictator i1 over ({y, z},Rn), and a local dictator i2 over ({x, z},Rn). Suppose
that i0 6= i1. Let R ∈ Rn be a preference profile such that xi0Pi0yi0 , yi2Pi2zi3 ,
and zi1Pi1xi1. Then, we have xP̄ (R)yP̄ (R)zP̄ (R)x, which contradicts the
transitivity of R̄(R). Hence, we must have i0 = i1. By the same argument,
we have i0 = i1 = i2.

Proof of Proposition 2: Let R̄ be a social ordering function satisfying
Weak Pareto and IIA-MRS. By Lemma 6, for every free pair {x, y} ⊂ X,
there exists a local dictator over ({x, y},Rn). By Lemma 7 and Bordes and
Le Breton (1989, Theorem 2), these dictators must be the same individual.
Denote the individual by i0. It remains to show that for any pair {x, y} that
is not free, i0 is the local dictator over ({x, y},Rn). Suppose, on the contrary,
that there exist {x, y} ⊂ X and R ∈ Rn such that {x, y} is not a free pair,
and xi0Pi0yi0 but yR̄(R)x. Define zi0 ∈ R`

+ as follows.
Case 1: {x, y} is a free pair for i0.
For all λ ∈]0, 1[, {λx+ (1− λ)y, x} and {λx+ (1− λ)y, y} are free pairs for
i0. By continuity, there exists λ

∗ such that xi0Pi0[λ
∗xi0 + (1− λ∗)yi0]Pi0yi0 .

Then, let zi0 = λ∗xi0 + (1− λ∗)yi0..
Case 2: {x, y} is not a free pair for i0.
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Then, for all k ∈ {1, · · · , `}, xi0k ≥ yi0k with at least one strict inequality.
Note that y 6= 0.
Case 2-1: There exists k0 such that for all k ∈ {1, · · · , `} with k 6= k0,
xi0k = yi0k and yi0k0 > 0.
Then, xi0k0 > yi0k0 > 0. Given ε > 0, define wi0 ∈ R`

+ as wi0k0 = yi0k0
and for all k 6= k0, wi0k = yi0k + ε. For sufficiently small ε, we have
xi0Pi0wi0Pi0yi0 . Given δ > 0, define ti0 ∈ R`

+ as ti0k0 = wi0k0 − δ and for
all k 6= k0, ti0k = wi0k. For sufficiently small δ, we have xi0Pi0ti0Pi0yi0 . More-
over, {t, x} and {t, y} are free pairs for i0. Then, let zi0 = ti0.
Case 2-2: There exists k0 such that for all k ∈ {1, · · · , `} with k 6= k0,
xi0k = yi0k and yi0k0 = 0.
Then, for all k ∈ {1, · · · , `} with k 6= k0, xi0k = yi0k > 0. Let k00 6= k0. Given
ε > 0, define wi0 ∈ R`

+ as wi0k00 = xi0k00 − ε and for all k 6= k00, wi0k = xi0k.
For sufficiently small ε, we have xi0Pi0wi0Pi0yi0 . Given δ > 0, define ti0 ∈ R`

+

as ti0k0 = wi0k0 + δ and for all k 6= k0, ti0k = wi0k. For sufficiently small δ, we
have xi0Pi0ti0Pi0yi0 . Moreover, {t, x} and {t, y} are free pairs for i0. Then,
let zi0 = ti0 .
Case 2-3: There exists k0, k00 ∈ {1, · · · , `} with k0 6= k00, xi0k0 > yi0k0 and
xi0k00 > yi0k00 .
Let k∗ be such that yi0k∗ > 0. Given ε > 0, define wi0 ∈ R`

+ as wi0k∗ =
yi0k∗ − ε and for all k 6= k∗, wi0k = xi0k. For sufficiently small ε, we have
xi0Pi0wi0Pi0yi0 . Let k

∗∗ 6= k∗.Given δ > 0, define ti0 ∈ R`
+ as ti0k∗∗ = wi0k∗∗+δ

and for all k 6= k∗∗, ti0k = wi0k. For sufficiently small δ, we have xi0Pi0ti0Pi0yi0 .
Moreover, {t, x} and {t, y} are free pairs for i0. Then, let zi0 = ti0 .
Next, for each i 6= i0, let zi ∈ R`

+ be such that {z, x} and {z, y} are free
pairs for i. By the same construction as above, we can find such zi ∈ R`

+

for each i. Let z = (zi)i∈N ∈ Rn`
+ . Since i0 is the dictator over all free pairs,

we have that xP̄ (R)z and zP̄ (R)y. By transitivity of R̄, we have xP̄ (R)y,
which contradicts the supposition that yR̄(R)x.¥

7.2 Proof of Proposition 4

To prove the possibility result, let

R∗ = {R ∈ R|∀x ∈ R`
++, y ∈ R`

+ \ R`
++, xPy},

and say that a preference preordering R ∈ R is differentiable at zero if there
exists an open set V containing 0 such that R is differentiable on V ∩ R`

+.
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If R ∈ R∗n, x ∈ Rn`
++ and y ∈ Rn`

+ \ Rn`
++, then there is i ∈ N such that

xiPiyi. Define R̄ as follows. One has xR̄(R)y ⇔ x1R1y1 whenever R /∈ R∗n
or x, y ∈ Rn`

+ \ Rn`
++, or x, y ∈ Rn`

++ and R1 is differentiable at zero. One
has xR̄(R)y ⇔ x2R2y2 whenever R ∈ R∗n and x, y ∈ Rn`

++ and R1 is not
differentiable at zero. One has xP̄ (R)y whenever R ∈ R∗n and x ∈ Rn`

++ and
y ∈ Rn`

+ \ Rn`
++.

To check Weak Pareto, assume that xiPiyi for all i. Then, when R ∈ R∗n
it is impossible to have y ∈ Rn`

++ and x ∈ Rn`
+ \ Rn`

++, so that in all possible
cases, necessarily xP̄ (R)y. To check IIA-ISFA, notice that when x, y ∈ Rn`

++,
Ω(ω(x, y)) contains a neighborhood of 0, so that by changing individual pref-
erences on R`

+ \ Ω(ω(x, y)), one cannot change the fact that R1 is differen-
tiable at zero or not. When y ∈ Rn`

+ \Rn`
++, one has xP̄ (R)y if x ∈ Rn`

++, and
xR̄(R)y ⇔ x1R1y1 if x ∈ Rn`

+ \Rn`
++, which means that individual preferences

on Ω(ω(x, y)) (actually, on {x, y}) fully determine R̄(R) on {x, y}. Now, one
sees that no agent is a dictator, for all profiles, over all allocations in A.
Finally, it remains to check that transitivity is always obtained. If R /∈ R∗n,
this is due to transitivity of R1. If R ∈ R∗n, and R1 is differentiable at zero,
transitivity is similarly guaranteed over Rn`

+ \Rn`
++ and over Rn`

++, while strict
social preference always occurs for Rn`

++ against Rn`
+ \ Rn`

++. If R ∈ R∗n, and
R1 is not differentiable at zero, transitivity is guaranteed over Rn`

+ \ Rn`
++

by transitivity of R1, and over Rn`
++ by transitivity of R2, while strict social

preference always occurs for Rn`
++ against Rn`

+ \ Rn`
++.

In order to prove the impossibility, it is convenient to consider different
possible sizes of the population. Let λ ≥ 1 be such that IIA-ISEFA is satisfied
by R̄ with respect to it.
Case 1: n = 2. Consider the bundles x = (8, 1/ (2λ) , 0, ...), y =
(12, 1/ (2λ) , 0, ...), z = (1/ (2λ) , 12, 0, ...), w = (1/ (2λ) , 8, 0, ...). Let pref-
erences R1 and R2 be defined as follows. On the subset

S1 = {v ∈ R`+|∀i ∈ {3, ..., `}, vi = 0 and v2 ≤ min{v1, 1}}
one has

vR1v
0 ⇔ v1 + 2v2 ≥ v01 + 2v02,

and on the subset

S2 = {v ∈ R`+|∀i ∈ {3, ..., `}, vi = 0 and v1 ≤ min{v2, 1}},
one has

vR1v
0 ⇔ 2v1 + v2 ≥ 2v01 + v02.
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Since
w1 + (1− w1) + 2 [w2 − 2 (1− w1)] > x1 + 2x2

and
2 [y1 − 2 (1− y2)] + y2 + (1− y2) > 2z1 + z2,

it is possible to complete the definition of R1 such that wP1x and yP1z. Then
define R2 so that it coincides with R1 on S1 ∪ S2. Similarly, it is possible to
complete the definition of R2 such that xP2w and zP2y. Figure 2 illustrates
this construction (for λ = 1).
If the profile of preferences is R = (R1, R2), by Weak Pareto one has:

(y, x)P̄ (R)(z, w) and (w, z)P̄ (R)(x, y).

If the profile of preferences is R0 = (R1, R1), by Anonymity one has:

(y, x)Ī(R0)(x, y) and (w, z)Ī(R0)(z,w).

By IIA-ISEFA, since R1 and R2 coincide on S1 ∪ S2,

(y, x)Ī(R0)(x, y) ⇔ (y, x)Ī(R)(x, y)

and (w, z)Ī(R0)(z, w) ⇔ (w, z)Ī(R)(z, w).

By transitivity, one gets (x, y)P̄ (R)(x, y), which is impossible.
Case 2: n = 3. Consider the bundles x = (8, 1/ (3λ) , 0, ...), y =
(12, 1/ (3λ) , 0, ...), t = (10, 1/ (3λ) , 0, ...), z = (1/ (3λ) , 12, 0, ...), w =
(1/ (3λ) , 8, 0, ...), r = (1/ (3λ) , 10, 0, ...). Let preferences R1, R2 and R3 be
defined as above on the subset S1∪S2. And complete their definition so that
yP1z, wP1x, tP2r, zP2y, xP3w, rP3t.
If the profile of preferences is R = (R1, R2, R3), by Weak Pareto one has:

(y, t, x)P̄ (R)(z, r, w) and (w, z, r)P̄ (R)(x, y, t).

If the profile of preferences is R0 = (R1, R1, R1), by Anonymity one has:

(y, t, x)Ī(R0)(x, y, t) and (w, z, r)Ī(R0)(z, r, w).

By IIA-ISEFA, since R1, R2 and R3 coincide on S1, and S2 respectively,

(y, t, x)Ī(R0)(x, y, t) ⇔ (y, t, x)Ī(R)(x, y, t)

and (w, z, r)Ī(R0)(z, r, w) ⇔ (w, z, r)Ī(R)(z, r, w).
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By transitivity, one gets (x, y, t)P̄ (R)(x, y, t), which is impossible.
Case 3: n = 2k. Partition the population into k pairs, and construct an
argument similar to the case n = 2, with the bundles x = (8, 1/ (nλ) , 0, ...),
y = (12, 1/ (nλ) , 0, ...), z = (1/ (nλ) , 12, 0, ...), w = (1/ (nλ) , 8, 0, ...), and
the allocations (y, x, y, x, ...), (x, y, x, y, ...), (z, w, z, w, ...) and (w, z, w, z, ...).
Case 4: n = 2k+1. Partition the population into k−1 pairs and one triple,
and construct an argument combining the cases n = 2 and n = 3, with the
bundles x = (8, 1/ (nλ) , 0, ...), y = (12, 1/ (nλ) , 0, ...), t = (10, 1/ (nλ) , 0, ...),
z = (1/ (nλ) , 12, 0, ...), w = (1/ (nλ) , 8, 0, ...), r = (1/ (nλ) , 10, 0, ...), and
the allocations (y, x, y, x, ..., y, t, x), (x, y, x, y, ..., x, y, t), (z, w, z, w, ...z, r, w)
and (w, z, w, z, ..., w, z, r).
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