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Abstract

In a continuous-time economy with complete markets, we study how the heterogeneity in the
individual consumers’ risk tolerance and impatience affects the representative consumer’s risk
tolerance and impatience. We derive some formulas, which indicate that the representative
consumer’s impatience decrease over time, and whether his risk tolerance increases or decreases
over time depends on the sign of some weighted covariance between the individual consumers’
cautiousness (derivative of risk tolerance with respect to own consumptions) and impatience.
These results are then used to show that the short rate tends to decrease over time and the
market price of risk is volatile in some special cases of heterogeneous economies.

JEL Classification Codes: D51, D53, D61, D81, D91, G12, G13.

Keywords: Representative consumer, risk tolerance, impatience, state-price deflator, short-
rate process, market price of risk.



1 Introduction

In this paper, we consider a dynamic economic model of continuous-time consisting of multiple
consumers. Our purpose is to assess the impacts of heterogeneity of consumers’ impatience
(often measured as discount rates) and risk attitudes (often measured as absolute risk aversion
or its reciprocal, absolute risk tolerance) on equilibrium asset pricing. It is well known that if
the asset markets are complete, we can define a representative consumer as the value function
of the problem of maximizing a weighted sum of individual consumers’ utilities and that we
can use his marginal utilities, evaluated at the aggregate consumption process, as the state-
price deflator to price all assets at any point in time. The task of investigating the impacts of
heterogeneous impatience and risk attitudes on asset prices, therefore, boils down to the task of
investigating the impacts of heterogeneous impatience and risk attitudes on the representative
consumer’s utility function. This is what we shall do in this paper.

We aim at establishing general properties of the representative consumer’s utility function
arising from heterogeneity. By being general, what we mean here is that the results ought to be
independent of the number of (types of) consumers in the economy, the functional forms of their
utility (or felicity) functions, and the stochastic characteristics of the consumption processes.

We also aim at establishing some formulas describing how the heterogeneity affects the
representative consumer’s utility function. To see why obtaining such a formula, as opposed to
a merely qualitative prediction, is useful, let us compare one of our results (Theorem 3 and its
corollary, Corollary 3) with an existing one (Proposition 5 of Gollier and Zeckhauser (2005)).
Proposition 5 of Gollier and Zeckhauser (2005) showed that if all consumers have constant but
unequal impatience (so that the discount factor is a negative exponential function of time)
and exhibit decreasing absolute risk aversion, then the representative consumer’s impatience
will decrease over time. On the other hand, Theorem 3 and Corollary 3 of this paper give
formulas that relate the individual consumers’ impatience and cautiousness (the derivative of
absolute risk tolerance) to the derivative of the representative consumer’s discount rate with
respect to time. One can easily see from our formulas that as long as there are many consumers,
the representative consumer’s impatience would decrease over time even if the assumption of
decreasing absolute risk aversion is violated, to some extent, by a small number of consumers.
But the qualitative prediction by Gollier and Zeckhauser, as it stands, does not allow us to judge
whether the prediction would still be true when the deviations are small. While formulas allow
us to see that some conclusions are robust to small deviations from the assumptions, qualitative
predictions do not. This is why we aim at obtaining formulas rather than just qualitative
predictions.

Throughout the paper, we assume that all consumers’ utility functions are time-additive.
Although this is a fairly common assumption in finance and macroeconomics, it does exclude
some utility functions, such as recursive utilities and utilities of habit formation. By excluding
them, we do not mean that they are unimportant or uninteresting. Rather, our intention is to
make full use of the existing analytical techniques on the impacts of heterogeneous risk attitudes,
as presented in Hara, Huang, and Kuzmics (2007), under the assumption of expected utilities
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and equal impatience, to the analysis of heterogeneous impatience.
This paper is most closely related to Gollier and Zeckhauser (2005). They investigated how

the representative consumer’s impatience is affected by the heterogeneity of the individual con-
sumers’ impatience. They also showed that if there are infinitely many consumers and their im-
patience are exponentially distributed, then the representative consumer may exhibit hyperbolic
discounting. But their model is a deterministic one and, as discussed above, their results tend
to be qualitative. In a discrete-time model under uncertainty, Malamud and Trubowitz (2006)
showed that the way in which the representative consumer’s risk aversion changes over time
is determined by a weighted covariance of the individual consumers’ impatience and cautious-
ness. In Sections 3 and 4, we use a similar approach to obtain more general results with simpler
proofs. The methodology of this paper closely follows that of Hara, Huang, and Kuzmics (2007).
Hara (2006) applied the techniques of Hara, Huang, and Kuzmics (2007) to a continuous-time
setup under the assumption that all consumers have the discount rate. This paper can thus
be considered as an extension of that paper to the case of unequal impatience. Hara (2008)
elaborated on the result in Gollier and Zeckhauser (2005) on hyperbolic discounting by show-
ing that the representative consumer’s discount factor is a power function of some completely
monotone function if and only if it can be derived from some economy populated by consumers
with constant and equal relative risk aversion.

An important message of the results in this paper is that if the representative consumer
is truly representative, in the sense that his utility function is derived from a group of het-
erogeneous consumers, then his utility function is quite likely to exhibit decreasing discount
rates and unlikely to be multiplicatively separable between time and aggregate consumption
levels. This fact cast serious doubts on the plausibility of the prevalent use of constant dis-
count rates and multiplicatively separable utility functions for the representative consumer in
the representative-consumer models of dynamic macroeconomics.

In Section 5, we uses these results to see how the short-rate process and the market-price-
of-risk process in a heterogeneous economy are different from those in a homogeneous economy,
by assuming that the aggregate consumption process is a geometric Brownian motion and
each individual consumer’s subjective discount rate and coefficient of relative risk aversion
are constant. If the subjective discount rates and the coefficients of relative risk aversion are
equal across all consumers, then the short-rate process and the market-price-of-risk process are
deterministic and constant. We show that otherwise, they can be stochastic. Moreover, while
the short-rate process tends to be decreasing over time, whether the market-price-of-risk process
tends to be increasing or decreasing over time depends on the correlation between the individual
consumers’ discount rates and coefficients of relative risk aversion.

This paper is organized as follows: In Section 2, we lay out the setup of this paper and explain
basic concepts for our analysis. In Section 3, we identify the implications of heterogeneous
impatience and risk attitudes on the representative consumer’s risk attitudes. In Section 4, we
identify the implications on his impatience. In Section 5, we investigate the short-rate process
and the market-price-of-risk process. In Section 6, we summarize our results and suggest two
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directions of future research.

2 Setup and Existing Results

The setup of this paper is as follows. The economy is subject to uncertainty, which is represented
by a probability measure space (Ω, F , P ). The time span is [0, T ] with 0 < T < ∞, which is
of finite length, although the analysis in Sections 3 and 4 would be valid even when the time
span were [0,∞). The gradual information revelation is represented by a filtration (Ft)t∈[0,T ].
There is only one type of good on each time and state.

The economy consists of I consumers. Each consumer i has a possibly time-dependent
felicity function ui : R++ × [0, T ] → R, which is at least twice continuously differentiable,1 and
satisfies ∂ui(xi, t)/∂xi > 0 > ∂2ui(xi, t)/∂

(
xi

)2 for every (xi, t) ∈ R++ × [0, T ] and the Inada
condition, that is, for every t ∈ [0, T ], ∂ui(xi, t)/∂xi → 0 as xi → ∞, and ∂ui(xi, t)/∂xi → ∞
as xi → 0. His utility function Ui over stochastic consumption processes are then defined by
taking time additivity and state-independent expected utility:

Ui(ci) = E

(∫ T

0
ui(c

i
t, t) dt

)
,

where ci =
(
ci
t

)
t∈[0,T ]

is an adapted process taking values in R++.2

The key parameters of the felicity function ui (and thus of the utility function Ui) are risk
tolerance and impatience. The risk tolerance si : R++ × [0, T ] → R++ is defined by

si(xi, t) = − ∂ui(xi, t)/∂xi

∂2ui(xi, t)/∂(xi)2
.

This is nothing but the reciprocal of the Arrow-Pratt measure of absolute risk aversion. In this
dynamic setup, this also measures tolerance to intertemporal consumption fluctuations. The
partial derivative with respect to xi, ∂si(xi, t)/∂xi, is called the cautiousness. The impatience,
or discount rate, ri : R++ × [0, T ] → R is defined by

ri(xi, t) = −∂2ui(xi, t)/∂xi∂t

∂ui(xi, t)/∂xi
.

An important class of utility functions is one of multiplicatively separable utility functions.
A utility function ui is multiplicatively separable if there are two functions vi : R++ → R

and di : R+ → R++ such that ui(xi, t) = di(t)vi(xi) for every (xi, t) ∈ R++ × [0, T ]. Then
si(xi, t) = −v′i(x

i)/v′′i (xi) and ri(xi, t) = −d′i(t)/di(t). We thus write si(xi) for si(xi, t) and ri(t)

1The degree of continuous differentiability needed in each of the subsequent results will be made clear in its
proof.

2To be exact, we need to impose some additional restrictions on ci to make the integral well defined (finite).
As such restrictions are irrelevant to the subsequent analysis, we shall not explicitly state them.
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for ri(xi, t) in this case. Then

di(t)
di(0)

= exp
(
−

∫ t

0
ri(τ) dτ

)
for every t. If, in addition, there exists a βi > 0 such that di(t) = exp(−βit), then ri(t) = βi

for every t ∈ [0, T ]. This is the case of exponential discounting.
To find a Pareto efficient allocation of a given aggregate consumption process c = (ct)t∈[0,T ]

and its supporting (decentralizing) state-price deflator, it is sufficient to choose positive numbers
λ1, . . . , λI and consider the following maximization problem:

max
(c1,...,cI)

∑
i

λiUi(ci)

subject to
∑

i

ci = c.
(1)

Since the utility functions Ui are additive with respect to both time and states and the proba-
bilistic belief P is common across consumers, it can be rewritten as

∑
i

λiUi(ci) = E

(∫ T

0

∑
i

λiui(c
i
t, t) dt

)
.

Hence, to solve the maximization problem (1), it suffices to solve

max
(x1,...,xI)∈RI

++

∑
i

λiui(xi, t)

subject to
∑

i

xi = x.
(2)

for each pair of a realized aggregate consumption level x ∈ R++ and time t ∈ [0, T ]. It can
be easily proved that under the stated conditions, there is a unique solution, which we denote
by (f1(x, t), . . . , fI(x, t)). It can also be shown that for each fi is continuously differentiable in
both variables. We can define the value function of this problem u : R++ × [0, T ] → R by

u(x, t) =
∑

i

λiui (fi(x, t), t) .

This is the felicity function of the representative consumer. It need not be multiplicatively sepa-
rable between time t and the consumption level x when all individual consumers discounts future
utilities exponentially but at differing rates. The representative consumer’s utility function is

U(c) = E

(∫ T

0
u(ct, t) dt

)
.

Just as for an individual consumer’s utility function, we define risk tolerance and impatience as
follows:

s(x, t) = − ∂u(x, t)/∂x

∂2u(x, t)/∂x2
and r(x, t) = −∂2u(x, t)/∂x∂t

∂u(x, t)/∂x
.
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The cautiousness is defined as the partial derivative ∂s(x, t)/∂x with respect to the aggregate
consumption level x.

The representative consumer is, of course, not an “actual” consumer, who would trade on
financial markets. Rather, he is a theoretical construct, who can be used to identify asset
prices. Specifically, if u is the representative consumer’s felicity function and c = (ct)t∈[0,T ] is
the aggregate consumption process, then his marginal utility process evaluated at the aggregate
consumption, (∂u(ct, t)/∂x)t∈[0,T ], is the state price process. This means that the price at time
t of an asset with dividend rate process δ = (δt)t∈[0,T ]

3 is equal to the discounted sum of its
future dividends:

Et

(∫ T

t

∂u(cτ , τ)/∂x

∂u(ct, t)/∂x
δτ dτ

)
.

Moreover, suppose that the aggregate consumption process is defined by a stochastic differential
equation

dct = a(ct, t) dt + b(ct, t) dBt,

where a : R++ × [0, T ] → R and b : R++ × [0, T ] → R. Then, as we will see in Section 5, the
short-rate process, which keeps track of interest rates for risk-free lending and borrowing for
infinitesimally short intervals of time, and the market-price-of-risk process, which keeps track
of the expected rates of return, in excess of the short rates, on risky assets to be earned by
accepting a unit increase in the standard deviation of the rate of return, can be represented in
terms of the representative consumer’s risk tolerance s and impatience r, and the drift term a

and the diffusion term b of the aggregate consumption process.
Although we analyze the Pareto efficient allocations, if the asset markets are complete,

then our analysis is applicable to the equilibrium allocations and asset prices. This is because
the first welfare theorem holds in complete markets, so that the equilibrium allocations are
Pareto efficient and the equilibrium asset prices are given by the marginal utility process. Since
the ui (·, t) are concave, the second welfare theorem also holds, so that every Pareto efficient
allocation is an equilibrium allocation for some distribution of initial endowments. Hence an
analysis of Pareto efficient allocations is also an analysis of equilibrium allocations.

The solution to the maximization problem (1) is a Pareto efficient allocation. When it is an
equilibrium allocation, the individual consumers’ wealth shares, evaluated by the equilibrium
prices, are positively related to the utility weights λi in (1). All the properties we shall explore
in the subsequent analysis are valid regardless of the choice of utility weights. Hence, these
properties are also valid for the equilibrium allocations regardless of wealth distributions.

To develop our analysis, we now list up some of the results that have been in the existing

3This means that the cumulative dividend process D = (Dt)t∈[0,T ] of this asset is given by D0 = 0 and

dDt = δt dt, that is, Dt =
R t

0
δτ dτ .

5



literature and hold for every (x, t) ∈ R++ × [0, T ]. By Theorems 4 and 5 of Wilson (1968),

s(x, t) =
∑

i

si(fi(x, t), t), (3)

∂fi

∂x
(x, t) =

si(fi(x, t), t)
s(x, t)

. (4)

By differentiating both sides of (3) with respect to x and applying (4), we obtain

∂s

∂x
(x, t) =

∑
i

∂fi

∂x
(x, t)

∂si

∂xi
(fi(x, t), t) =

∑
i

si (fi(x, t), t)
s(x, t)

∂si

∂xi
(fi(x, t), t) (5)

This shows that the representative consumer’s cautiousness is the weighted average of the in-
dividual consumers’ counterparts, where the weights are proportional to their absolute risk
tolerance.

By equality (10) and Proposition 3 of Gollier and Zeckhauser (2005),

r(x, t) =
∑

i

si(fi(x, t), t)
s(x, t)

ri(fi(x, t), t) (6)

∂fi

∂t
(x, t) = si(fi(x, t), t) (r(x, t) − ri(fi(x, t), t)) . (7)

(6) means that the representative consumer’s impatience is the weighted average of the individ-
ual consumers’ counterparts where the weights are proportional to their absolute risk tolerance.
(7) means that if an individual consumer is more patient than the representative consumer, the
former’s consumption level would grow over time were the aggregate consumption level to be
constant, and the growth rate is proportional to his absolute risk tolerance.

By applying Theorem 4 of Hara, Huang, and Kuzmics (2006) to the ui(·, t) for a fixed t and
using (4), we can obtain

∂2s

∂x2
(x, t) =

∑
i

(
si (fi(x, t), t)

s(x, t)

)2 ∂2si

∂ (xi)2
(fi(x, t), t) (8)

+
1

s(x, t)

∑
i

si(fi(x, t))
s(x, t)

(
∂si

∂xi
(fi(x, t), t) − ∂s

∂x
(x, t)

)2

. (9)

To understand this formula, note first that by (4), the first term on the right-hand side can be
written as ∑

i

si (fi(x, t), t)
s(x, t)

(
∂2si

∂ (xi)2
(fi(x, t), t)

∂fi

∂x
(x, t)

)

Here, the term
(
∂2si (fi(x, t), t) /∂

(
xi

)2
)

(∂fi(x, t)/∂x) is the change in the cautiousness of
consumer i arising from the increase in his consumption level, which is, in turn, caused by an
increase in the aggregate consumption level. Thus the first term is the weighted average of these
individual effects. It represents the direct effect on the representative consumer’s cautiousness
by an increase in aggregate consumption. By (3), the second term on the right-hand side is
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the weighted variance of the individual consumers’ cautiousness, divided by the representative
consumer’s absolute risk aversion. It represents the indirect effect on the representative con-
sumer’s cautiousness by an increase in aggregate consumptions arising from the heterogeneity in
the individual consumers’ cautiousness. This formula, therefore, shows that the heterogeneity
in the individual consumers’ cautiousness increases the representative consumer’s cautiousness,
thereby making his risk tolerance, as a function of aggregate consumption levels, more convex.
The formulas we seek to obtain in this paper are of this nature, which decompose the effect of
a change in aggregate consumptions or a passage of time on the change in the representative
consumer’s risk tolerance or impatience into the direct and indirect effects, the latter of which
arises from the heterogeneity in the individual consumers’ counterparts.

3 Representative Consumer’s Risk Tolerance

The first result of this paper is concerned with how the representative consumer’s risk tolerance
varies over time. In the special case of exponential discounting, an essentially identical formula
was already given in the proof of Theorem 3.3 of Malamud and Trubowitz (2006).

Theorem 1 For every (x, t) ∈ R++ × [0, T ],

∂s

∂t
(x, t) =

∑
i

∂si

∂t
(fi(x, t), t)

− s(x, t)
∑

i

si(fi(x, t))
s(x, t)

(
∂si

∂xi
(fi(x, t), t) − ∂s

∂x
(x, t)

)
(ri(fi(x, t)) − r(x, t)) . (10)

This theorem tells us that the rate, per unit of time, of changes in the representative consumer’s
risk tolerance can be decomposed into two terms. The first term on the right-hand side is easy to
grasp. As shown by (3), the representative consumer’s risk tolerance is the sum of the individual
consumers’ counterparts. Thus the first term represents the direct effect on risk tolerance by
time. It is equal to zero when all individual consumers’ felicity functions ui are multiplicatively
separable.

By (5) and (6), the second term of (10) is equal to the weighted covariance, multiplied by
the representative consumer’s risk tolerance, between the individual consumers’ cautiousness
and impatience, where the weights are proportional to the individual consumers’ risk tolerance.
Since the second term would be zero if all consumers’ cautiousness or impatience are equal to
one another, it captures the tendency of changes in the representative consumer’s impatience
that arise from the heterogeneity in the individual consumers’ cautiousness and impatience.

Combining the first and second terms of the right-hand side of (10), Theorem 1 states that
the rate of changes, per unit of time, in the representative consumer’s risk tolerance is the sum
of the individual counterparts subtracted by the weighted covariance, multiplied by his own risk
tolerance, between the individual consumers’ cautiousness and impatience.

7



Proof of Theorem 1 Differentiate both sides of (3) with respect to t, then we obtain

∂s

∂t
(x, t) =

∑
i

(
∂si

∂xi
(fi(x, t), t)

∂fi

∂t
(x, t) +

∂si

∂t
(fi(x, t), t)

)
=

∑
i

∂si

∂t
(fi(x, t), t) +

∑
i

∂si

∂xi
(fi(x, t), t)si(fi(x, t), t) (r(x, t) − ri(fi(x, t), t)) , (11)

where the last equality follows from (7). Since∑
i

si(fi(x, t), t) (r(x, t) − ri(fi(x, t), t)) = 0,

the second term of (11) can be written as

∑
i

(
∂si

∂xi
(fi(x, t), t) − ∂s

∂x
(x, t)

)
si(fi(x, t), t) (r(x, t) − ri(fi(x, t), t)) .

This is equal to the second term of the right-hand side of (10). ///

Theorem 1 has a couple of implications. The first one is a generalization of Theorem 3.3 of
Malamud and Trubowitz (2006) to the case of multiplicatively separable utility functions.

Corollary 1 Suppose that ui is multiplicatively separable for every i. Then

∂s(x, t)/∂t

s(x, t)
= −

∑
i

si(fi(x))
s(x, t)

(
s′i(fi(x, t)) − ∂s

∂x
(x, t)

)
(ri(t) − r(x, t))

for every (x, t) ∈ R++ × [0, T ]. Moreover,

1. If (s′1(f1(x, t)), . . . , s′I(fI(x, t))) and (r1(t), . . . , rI(t)) are comonotone (that is,(
s′i(fi(x, t)) − s′j(fj(x, t))

)
(ri(t) − rj(t)) ≥ 0 for every pair of two consumers i and j),

then ∂s(x, t)/∂t ≤ 0. This weak inequality holds as an equality if and only if s′1(f1(x, t)) =
· · · = s′I(fI(x, t)) or r1(t) = · · · = rI(t).

2. If (s′1(f1(x, t)), . . . , s′I(fI(x, t))) and (r1(t), . . . , rI(t)) are anti-comonotone (that is,(
s′i(fi(x, t)) − s′j(fj(x, t))

)
(ri(t) − rj(t)) ≤ 0 for every pair of two consumers i and j),

then ∂s(x, t)/∂t ≥ 0. This weak inequality holds as an equality if and only if s′1(f1(x, t)) =
· · · = s′I(fI(x, t)) or r1(t) = · · · = rI(t).

An important case of this corollary is Corollary 3.4 of Malamud and Trubowitz, which deals
with constant relative risk aversion and exponential discounting. In this case, s′i(x

i) is equal to
the reciprocal of constant relative risk aversion and r(t) is equal to the constant impatience, so
that the validity of the assumption of (anti-)comonotonicity can be checked without reference
to the choice of the consumption levels xi or time t.
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4 Representative Consumer’s Impatience

In this section, we turn our attention to the representative consumer’s impatience. The first
result of this section is concerned with how the representative consumer’s impatience is affected
by aggregate consumption levels.

Theorem 2 For every (x, t) ∈ R++ × [0, T ],

∂r

∂x
(x, t) =

∑
i

(
si (fi(x, t), t)

s(x, t)

)2 ∂ri

∂xi
(fi(x, t), t)

+
1

s(x, t)

∑
i

si(fi(x, t))
s(x, t)

(
∂si

∂xi
(fi(x, t), t) − ∂s

∂x
(x, t)

)
(ri(fi(x, t)) − r(x, t)) . (12)

Just as Theorem 1, this theorem tells us that the change in the representative consumer’s
impatience can be decomposed into two terms. The first term on the right-hand side is easy to
grasp. By (4), the first term can be rewritten as

∑
i

si (fi(x, t), t)
s(x, t)

(
∂ri

∂xi
(fi(x, t), t)

∂fi

∂x
(x, t)

)

Here, the term
(
∂ri (fi(x, t), t) /∂xi

)
(∂fi(x, t)/∂x) is the change in the impatience of consumer

i arising from the increase in his consumption level, which, in turn, caused by an increase in
the aggregate consumption level. Thus the first term is the weighted average of these individual
effects. It represents the direct effect on the representative consumer’s impatience by the change
in aggregate consumption. It is equal to zero when all individual consumers’ felicity functions
ui are multiplicatively separable.

The second term is equal to the weighted covariance, divided by the representative con-
sumer’s risk tolerance, between the individual consumers’ cautiousness and impatience, where
the weights are proportional to the individual consumers’ risk tolerance. Since the second term
would be zero if all consumers’ cautiousness or impatience are equal to one another, it captures
the tendency of changes in the representative consumer’s impatience that arise from the hetero-
geneity in the individual consumers’ cautiousness and impatience. Theorem 2 states that the
change in the representative consumer’s impatience is the sum of the individual counterparts,
added by the weighted covariance, divided by his own risk tolerance, between the individual
consumers’ cautiousness and impatience.

Proof of Theorem 2 By (6),

s(x, t)r(x, t) =
∑

i

si(fi(x, t), t)ri(fi(x, t), t). (13)
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Differentiate both sides of (13) with respect to x, then we obtain

∂s

∂x
(x, t)r(x, t) + s(x, t)

∂r

∂x
(x, t)

=
∑

i

(
∂si

∂xi
(fi(x, t), t)

∂fi

∂x
(x, t)ri (fi(x, t), t) + si (fi(x, t), t)

∂ri

∂xi
(fi(x, t), t)

∂fi

∂x
(x, t)

)
.

Thus

r(x, t) =
1

s(x, t)

∑
i

si (fi(x, t), t)
∂ri

∂xi
(fi(x, t), t)

∂fi

∂x
(x, t)

+
1

s(x, t)

(∑
i

∂si

∂xi
(fi(x, t), t)

∂fi

∂x
(x, t)ri (fi(x, t), t) − ∂s

∂x
(x, t)r(x, t)

)

=
∑

i

(
si (fi(x, t), t)

s(x, t)

)2 ∂ri

∂xi
(fi(x, t), t)

+
1

s(x, t)

(∑
i

si (fi(x, t), t)
s(x, t)

∂si

∂xi
(fi(x, t), t)ri (fi(x, t), t) − ∂s

∂x
(x, t)r(x, t)

)
,

where the last equality follows from (4). By (5) and (6),

∑
i

si (fi(x, t), t)
s(x, t)

∂si

∂xi
(fi(x, t), t)ri (fi(x, t), t) − ∂s

∂x
(x, t)r(x, t)

=
∑

i

si(fi(x, t))
s(x, t)

(
∂si

∂xi
(fi(x, t), t) − ∂s

∂x
(x, t)

)
(ri(fi(x, t)) − r(x, t)) .

The proof is thus completed. ///

In the case of multiplicatively separable utility functions, we have the following corollary.

Corollary 2 Suppose that ui is multiplicatively separable for every i. Then

∂r

∂x
(x, t) =

1
s(x, t)

∑
i

si(fi(x))
s(x, t)

(
s′i(fi(x, t)) − ∂s

∂x
(x, t)

)
(ri(t) − r(x, t))

for every (x, t) ∈ R++ × [0, T ]. Moreover,

1. If (s′1(f1(x, t)), . . . , s′I(fI(x, t))) and (r1(t), . . . , rI(t)) are comonotone (that is,(
s′i(fi(x, t)) − s′j(fj(x, t))

)
(ri(t) − rj(t)) ≥ 0 for every pair of two consumers i and j),

then ∂r(x, t)/∂x ≥ 0. This weak inequality holds as an equality if and only if s′1(f1(x, t)) =
· · · = s′I(fI(x, t)) or r1(t) = · · · = rI(t).

2. If (s′1(f1(x, t)), . . . , s′I(fI(x, t))) and (r1(t), . . . , rI(t)) are anti-comonotone (that is,(
s′i(fi(x, t)) − s′j(fj(x, t))

)
(ri(t) − rj(t)) ≤ 0 for every pair of two consumers i and j),

then ∂r(x, t)/∂x ≤ 0. This weak inequality holds as an equality if and only if s′1(f1(x, t)) =
· · · = s′I(fI(x, t)) or r1(t) = · · · = rI(t).
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We next give a formula for ∂r(x, t)/∂t, which shows how the representative consumer’s
impatience varies over time.

Theorem 3 For every (x, t) ∈ R++ × [0, T ],

∂r

∂t
(x, t) =

∑
i

si(fi(x, t), t)
s(x, t)

∂ri

∂t
(fi(x, t), t)

+
∑

i

si(fi(x, t), t)
s(x, t)

(ri(fi(x, t), t) − r(x, t))2
∂si

∂xi
(fi(x, t), t)

+
∑

i

si(fi(x, t), t)
s(x, t)

(ri(fi(x, t), t) − r(x, t))

×

 ∂si

∂t
(fi(x, t), t)

si(fi(x, t), t)
−

∂s

∂t
(x, t)

s(x, t)
+

∂ri

∂xi
(fi(x, t), t)si(fi(x, t), t)

 . (14)

This theorem tells us that the rate, per unit of time, of changes in the representative con-
sumer’s impatience can be decomposed into three terms. The first term is easy to grasp. As
shown by (6), the representative consumer’s impatience is equal to the weighted average of the
individual consumers’ counterparts, where the weights are proportional to their risk tolerance.
Thus the first term represents the direct effect, by time, on the representative consumer’s im-
patience, while the weights are hypothetically fixed. It is equal to zero if all the consumers’
felicity functions ui are of exponential discounting.

The third term represents the change in the representative consumer’s impatience caused
by the impact on the individual consumers’ risk tolerance by time, and also by the impact on
their impatience by consumption levels. It is equal to zero if all consumers’ felicity functions
are multiplicatively separable.

The second term is most interesting. It represents the impact on the representative con-
sumer’s impatience when the individual consumers have differing impatience. As mentioned
above, the representative consumer’s impatience is equal to the weighted average of the indi-
vidual consumers’ counterparts, and the weights are proportional to their risk tolerance. If
their impatience are different, then the risk-sharing rules fi would depend on time t; that
is, the partial derivative ∂fi(x, t)/∂t would be different from zero. Unless the cautiousness,
∂si(fi(x, t), t)/∂xi, is zero (which would be the case if ui exhibited constant absolute, rather
than relative, risk aversion), the change in consumption levels has an impact on the individual
consumers’ risk tolerance, and thus on the representative consumer’s impatience, which is the
weighted average of the individual consumers’ impatience, with the weights given by their risk
tolerance. The second term, therefore, captures the change in the representative consumer’s
impatience arising from the heterogeneity in the individual consumers’ impatience.

Proof of Theorem 3 By (6) and differentiation for a product,

∂r

∂t
(x, t) =

∑
i

d

dt

(
si(fi(x, t), t)

s(x, t)

)
ri (fi(x, t), t) +

∑
i

si(fi(x, t), t)
s(x, t)

d

dt
(ri (fi(x, t), t)) . (15)
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By (7),

d

dt

(
si(fi(x, t), t)

s(x, t)

)

=

∂si

∂xi
(fi(x, t), t)

s(x, t)
∂fi

∂t
(x, t) +

∂si

∂t
(fi(x, t), t)

s(x, t)
− si(fi(x, t), t)

(s(x, t))2
∂s

∂t
(x, t)

=
si(fi(x, t), t)

s(x, t)

 ∂si

∂t
(fi(x, t), t)

si(fi(x, t), t)
−

∂s

∂t
(x, t)

s(x, t)
+

∂si

∂xi
(fi(x, t), t) (ri(fi(x, t), t) − r(x, t))

 .

By (3), ∑
i

d

dt

(
si(fi(x, t), t)

s(x, t)

)
= 0.

Thus,

∑
i

d

dt

(
si(fi(x, t), t)

s(x, t)

)
ri (fi(x, t), t)

=
∑

i

d

dt

(
si(fi(x, t), t)

s(x, t)

)
(ri (fi(x, t), t) − r(x, t))

=
∑

i

si(fi(x, t), t)
s(x, t)

∂si

∂xi
(fi(x, t), t) (ri (fi(x, t), t) − r(x, t))2

+
∑

i

si(fi(x, t), t)
s(x, t)

 ∂si

∂t
(fi(x, t), t)

si(fi(x, t), t)
−

∂s

∂t
(x, t)

s(x, t)

 (ri (fi(x, t), t) − r(x, t)) (16)

Again by (7),

d

dt
(ri (fi(x, t), t))

=
∂ri

∂xi
(fi(x, t), t)

∂fi

∂t
(x, t) +

∂ri

∂t
(fi(x, t), t)

=
∂ri

∂xi
(fi(x, t), t) si (fi(x, t), t) (ri (fi(x, t), t) − r(x, t)) +

∂ri

∂t
(fi(x, t), t) .

Hence,

∑
i

si(fi(x, t), t)
s(x, t)

d

dt
(ri (fi(x, t), t))

=
∑

i

si(fi(x, t), t)
s(x, t)

∂ri

∂t
(fi(x, t), t)

+
∑

i

si(fi(x, t), t)
s(x, t)

∂ri

∂xi
(fi(x, t), t) si (fi(x, t), t) (ri (fi(x, t), t) − r(x, t)) . (17)

Thus, by (15), (16), and (17), we obtain (14). ///

12



The right-hand side of (14) in Theorem 3 can be much simplified if we concentrate on the case
of multiplicatively separable felicity functions. The following corollary follows from Theorem 3
and (6)

Corollary 3 Suppose that ui is multiplicatively separable for every i. Then

∂r

∂t
(x, t) =

∑
i

si(fi(x, t))
s(x, t)

r′i (t) −
∑

i

si(fi(x, t))
s(x, t)

(ri(t) − r(x, t))2 s′i(fi(x, t))

for every (x, t) ∈ R++ × [0, T ]. Moreover,

1. If r′(t) ≤ 0 and s′i(fi(x, t)) ≥ 0 for every i, then ∂r(x, t)/∂t ≤ 0. This weak inequality
holds as an equality if and only if r′1(t) = · · · = r′I(t) = 0 and, in addition, either r1(t) =
· · · = rI(t) or s′1(f1(x, t)) = · · · = s′I(fI(x, t)) = 0.

2. If r′(t) ≥ 0 and s′i(fi(x, t)) ≤ 0 for every i, then ∂r(x, t)/∂t ≥ 0. This weak inequality
holds as an equality if and only if r′1(t) = · · · = r′I(t) = 0 and, in addition, either r1(t) =
· · · = rI(t) or s′1(f1(x, t)) = · · · = s′I(fI(x, t)) = 0.

An important case of this corollary is where all individual consumers have constant impa-
tience. Then r′i(t) = 0 for every i and t, and hence

∂r

∂t
(x, t) = −

∑
i

si(fi(x, t))
s(x, t)

(ri(t) − r(x, t))2 s′i(fi(x, t)) (18)

This means that the representative consumer’s impatience decreases (increases) over time when-
ever the individual consumers have constant but unequal impatience, and their risk tolerance
are increasing (decreasing) functions of their own consumptions. This is exactly the claim of
Proposition 5 of Gollier and Zeckhauser (2005). Notice, however, that (18) implies, in addition,
that even if some individual consumers do not have increasing (decreasing) risk tolerance, the
representative consumer’s impatience may well be decreasing (increasing), if most individual
consumers have increasing (decreasing) risk tolerance.

5 Short Rates and Market Price of Risk

In this section, we apply the formulas obtained in the preceding sections to show how the short-
rate process and the market-price-of-risk process depend on the heterogeneity of risk attitudes
and impatience. We shall do so in three steps. First, we review well known results on the
relationship between the state price deflator, the equivalent martingale measure, the short-
rate process, and the market-price-of-risk process, taking the state-price deflator as a primitive
datum. Second, assuming that the aggregate consumption process is given by a stochastic
differential equation, we derive some general formulas regarding the short rates and market
price of risk when the state price deflator is the representative consumer’s marginal utility
process evaluated at the aggregate consumption process. Third, in some special cases, we show
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how the short rates and market price of risk in a heterogeneous economy differ from their
counterparts in the standard representative-consumer model.

5.1 State-price deflator and equivalent martingale measure

Duffie (2001, Chapter 6) is a standard reference on the following materials. Let B = (Bt)t∈[0,T ]

be a one-dimensional Brownian motion and (Ft)t∈[0,T ] be the standard filtration generated by
B. Let π = (πt)t∈[0,T ] be a strictly positive Ito process, referred to as the state-price deflator,
satisfying

dπt = µπ
t dt + σπ

t dBt,

where µπ = (µπ
t )t∈[0,T ] and σπ = (σπ

t )t∈[0,T ] are adapted processes. Define the short-rate process
ρ = (ρt)t∈[0,T ] by ρt = −µπ

t /πt, and the market-price-of-risk process η = (ηt)t∈[0,T ] by ηt =
−σπ

t /πt.
4 Then define an Ito processes ζ = (ζt)t∈[0,T ] by ζ0 = 1 and dζt/ζt = −ρt dt; and define

another Ito process ξ = (ξt)t∈[0,T ] by ξ0 = 1 and dξt/ξt = −ηt dBt. Then,

ζt = exp
(
−

∫ t

0
ρτ dτ

)
,

ξt = exp
(
−

∫ t

0
ητ dBτ − 1

2

∫ t

0
η2

τ dτ

)
,

πt

π0
= ζtξt.

In particular, ξ is a martingale.
To see what the short-rate process ρ represents, suppose that the price Λt,τ at time t of

the (risk-free) discount bond that pays one unit at time τ > t is determined by the state-price
deflator π via

Et

(
πτ

πt

)
.

Since Et ((ζτ − ζt) (ξτ − ξt)) = 0 and since ξ is a martingale,

Λt,τ = exp
(
−

∫ τ

t
ρs ds

)
.

This relation tells us that the short-rate process represents the continuously compounded risk-
free interest rates for infinitesimally short periods of time.

Next, to see what the market-price-of-risk process η represents, suppose that the price
process S = (St)t∈[0,T ] of an asset with the dividend rate process δ = (δt)t∈[0,T ] is determined
by the state-price deflator π via

St = Et

(∫ T

t

πτ

πt
δτ dτ

)
.

4For the following argument to be correct, it is necessary that these processes satisfy some sorts of integrability
conditions, such as Novikov’s condition. But we shall not explicitly state such conditions, as imposing them does
not affect the formulas we will obtain at the end of our analysis.
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This is equivalent to saying that ST = 0 and the deflated gain process G = (Gt)t∈[0,T ] defined
by

Gt =
∫ t

0
πτδτ dτ + πtSt

is a martingale. Moreover, since

St =
1
πt

(
Et

(∫ T

0
πτδτ dτ

)
−

∫ t

0
πτδτ dτ

)
,

S is an Ito process by the martingale representation theorem and Ito’s lemma. We, thus, write

dSt = µS
t dt + σS

t dBt,

where µS = (µS
t )t∈[0,T ] and σS = (σS

t )t∈[0,T ] are adapted processes. Since S is an Ito process, so
is G; and since G is a martingale, its drift term is zero. Hence

ηt =
µS

t /St + δt/St − ρt

σS
t /St

.

This justifies the term “market price of risk”: it is the expected rate of return, in excess of the
short rate, on risky assets to be earned by accepting a unit increase in the standard deviation
of the rate of return. Note that this equality holds regardless of the choice of the dividend rate
process δ.

To get another meaning of the market-price-of-risk process η, note that ξ is a strictly positive
martingale with mean one, and hence there is a probability measure Q equivalent to P for which
ξ is the density process, that is,

Et

(
dQ

dP

)
= ξt.

Define an Ito process BQ = (BQ
t )t∈[0,T ] by BQ

0 = 0 and dBQ
t = dBt + ηt dt, that is, BQ

t =
Bt +

∫ t
0 ητ dτ . By Girsanov’s theorem, BQ is a standard Brownian motion under Q. Define the

discounted gain process H = (Ht)t∈[0,T ] by

Ht =
∫ t

0
exp

(
−

∫ τ

0
ρs ds

)
δτ dτ + exp

(
−

∫ t

0
ρτ dτ

)
St.

By Ito’s lemma, this is an Ito process under P and hence under Q. It also follows from the
lemma that its drift term under Q is equal to zero. Thus it is a martingale under Q. For this
reason, Q is called the equivalent martingale measure. Since ST = 0, H is a martingale under
Q (if and) only if

St = EQ

(∫ T

t
exp

(
−

∫ τ

t
ρs ds

)
δτ dτ

)
.

That is, the asset price is equal to the expected discounted sum of future dividends under the
equivalent martingale measure Q. The market-price-of-risk process η can therefore be considered
as the process of adjustments in the drift term needed to turn the asset price into the expected
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discounted sum of future dividends.

5.2 State prices as marginal utilities

Suppose that the aggregate consumption process c = (ct)t∈[0,T ] is a solution to the stochastic
differential equation

dct = a(ct, t) dt + b(ct, t) dBt,

where a : R++ × [0, T ] → R and b : R++ × [0, T ] → R and these are twice continuously
differentiable. Also let u : R++ × [0, T ] → R be the representative consumer’s felicity function,
derived as in Section 2. Then the state-price deflator π is defined by

πt =
∂u

∂x
(ct, t).

Define g : R++ × [0, T ] → R by

g(x, t) = r(x, t) +
a(x, t)
s(x, t)

− 1
2

(
b(x, t)
s(x, t)

)2 (
1 +

∂s

∂x
(x, t)

)
.

By applying Ito’s lemma as in Hara (2006, Proposition 3) to ∂u/∂x and c, we obtain

ρt = g(ct, t).

Thus, g represents the short rates as a (deterministic) function of time and aggregate consump-
tion levels. Similarly, define h : R++ × [0, T ] → R by

h(x, t) =
b(x, t)
s(x, t)

, (19)

then
ηt = h(ct, t). (20)

Thus, h represents the market price of risk as a (deterministic) function of time and aggregate
consumption levels.

5.3 Heterogeneity in risk attitudes and impatience

We now analyze how the short rate process ρ and the market-price-of-risk process η are af-
fected by the heterogeneity in risk attitudes and impatience through the two functions g and
h. To simplify the subsequent analysis, we assume that the felicity function ui of the individual
consumer i is given by

ui(xi, t) = exp(−βit)
(xi)1−γi − 1

1 − γi
,

where βi ∈ R++ and γi ∈ R++. By convention, when γi = 1, we mean ui(xi, t) = exp(−βit) ln xi.
Here βi is the constant subjective discount rate and γi is the constant coefficient of relative risk
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aversion. Thus ri(xi, t) = βi and si(xi, t) = xi/γi for every (xi, t) ∈ R++ × [0, T ]. We also
assume that a(x, t) = µx and b(x, t) = σx for every x ∈ R++, where µ ∈ R and σ ∈ R. Here
µ is the expected instantaneous growth rate of aggregate consumptions and σ2 is the variance
of the instantaneous growth rate of aggregate consumptions. Then, c is a geometric Brownian
motion satisfying

ct

c0
= exp

((
µ − σ2

2

)
t + σBt

)
.

Let’s see what the short-rate process ρ = (g(ct, t)t)t∈[0,T ] and the market-price-of-risk process
η = (h(ct, t)t)t∈[0,T ] are like. First, as the benchmark case of an homogeneous economy, suppose
that β1 = · · · = βI and γ1 = · · · = γI . Then (5) and (6) imply that

u(x, t) = exp(−βt)
(x)1−γ − 1

1 − γ
,

where β = βi and γ = γi for every i.5 That is, the representative consumer has the same risk
attitudes and impatience as the individual consumers. Then

ρt = β + µγ − σ2

2
γ(1 + γ)

and
ηt = σγ.

Thus the short-rate process and the market-price-of-risk processes are deterministic and con-
stant, just as in the Black-Scholes model, where the stock price process is assumed to be a
geometric Brownian motion.

Second, consider the case where the γi’s are all equal but the βi’s are not. This is the case
where the individual consumers have the same risk attitudes but different impatience, studied
in details by Hara (2008). In this case, by (5) and Corollary 1, the representative consumer’s
utility function is multiplicatively separable between time t and aggregate consumption levels
x, and has the constant coefficient of relative risk aversion equal to the individual consumers’
counterparts. We can, thus, write

u(x, t) = d(t)
(x)1−γ − 1

1 − γ
,

where γ = γi for every i and d : [0, T ] → R++. Write r(t) = −d′(t)/d(t), then r′(t) < 0 by (18).
Since

ρt = r(t) + µγ − σ2

2
γ(γ + 1),

the short-rate process is deterministic and strictly decreasing. On the other hand, since ηt = σγ,
the market-price-of-risk process is deterministic and constant.

Third, consider the case where the βi’s are all equal but the γi’s are not. This is the case

5To be exact, we should say that u(x, t) is a scalar multiple of exp(−βt)((x)1−γ − 1)/(1 − γ). This remark
also applies to the subsequent expressions of u(x, t).
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where the individual consumers have the same impatience but different risk attitudes, studied
in details by Hara (2006). By (6) and Corollary 1, then, the representative consumer’s utility
function is multiplicatively separable between time t and aggregate consumption levels x, and
has the constant discount rate equal to the individual consumers’ counterparts. We can, thus,
write

u(x, t) = exp(−βt)u(x),

where β = βi for every i and u : R++ → R. Since ∂2si(xi, t)/∂(xi)2 = 0 for every i and (xi, t),
(8) implies that ∂2s(x, t)/∂(x)2 > 0. This implies that q′(x) < 0, where q(x) = −u′′(x)x/u′(x).
Moreover, according to (18) of Hara (2006),

ρt = β + µq(ct) −
σ2

2
q(ct)

(
q(ct) + 1 − q′(ct)ct

q(ct)

)
. (21)

Thus the short-rate process is stochastic but time-invariant, that is, ρt depends on ct but not
directly on t. On the other hand, since ηt = σq(ct), the market-price-of-risk process is stochastic
but ηt is a strictly decreasing deterministic function of ct. This means that the market price of
risk is higher the lower the aggregate consumption level ct; and the market-price-of-risk process
is time-invariant like the short-rate process.

Finally, consider the case where neither the βi nor the γi are all equal. By (18), ∂r(x, t)/∂t <

0. Write

q(x, t) = −

∂2u

∂x2
(x, t)x

∂u

∂x
(x, t)

.

Then ∂q(x, t)/∂x < 0 for every (x, t) because ∂2s(x, t)/∂x2 < 0 for every (x, t). Just as we did
for (21), we can show that

ρt = r(ct, t) + µq(ct, t) −
σ2

2
q(ct, t)

q(ct, t) + 1 −

∂q

∂x
(ct, t)ct

q(ct, t)

 .

This shows that the short-rate process ρ is stochastic and not time-invariant, but it is difficult to
qualitatively determine whether the short rates depends monotonically on time t or aggregate
consumption levels ct. As for the market price of risk,

ηt = σq(ct, t).

Since ∂q(x, t)/∂x < 0, the market price of risk is higher the lower the aggregate consumption
level ct. By Corollary 1, if the βi and γi are comonotone, then ∂q(x, t)/∂t < 0, while if they
are anti-comonotone, then ∂q(x, t)/∂t > 0. Thus, if, for any pair of two consumers, the more
risk-averse consumer is less patient, then the market price of risk tends to decrease over time;
and if the more risk-averse consumer is more patient, then the market price of risk tends to
increase over time. More generally, as Corollary 1 suggests, if the subjective discount rates βi
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and the coefficients γi of relative risk aversion are positively correlated, then the market price of
risk tends to decrease over time; and if they are negatively correlated, then it tends to increase
over time. Jagannathan, McGrattan, and Scherbina (2000) (and the references therein) found
that the equity premium declined significantly in the U.S. during the last three decades of the
twentieth century.6 This is consistent, in our model, with the case where the subjective discount
rates βi and the coefficients γi of relative risk aversion are positively correlated.7

The analysis of this section can be summarized as follows. Using the (state,time)-by-
(state,time) (that is, (x, t)-by-(x, t)) formulas on the representative consumer’s risk attitudes
and impatience obtained in the preceding sections, we investigated what the short rates and the
market price of risk are like when the aggregate consumption process is a geometric Brownian
motion and each individual consumer’s subjective discount rate and coefficient of relative risk
aversion are constant. The analysis relies on stochastic calculus, especially Ito’s lemma. We
found that the short rates tend to decline over time and the market price of risk tends to be
lower the higher the aggregate consumption levels. The change in the market price of risk over
time depends on the correlation between the individual consumers’ risk attitudes and impa-
tience: it decreases over time if more risk-averse consumers are likely to be less patient, while
it increases over time if more risk-averse consumers are likely to be more patient.

6 Conclusion

We have investigated implications of heterogeneous impatience in an economy populated by
multiple consumers who have time-separable utility functions. We have found some formulas
showing how the representative consumer’s risk attitudes and impatience will change over time.
We have applied these results to derive some properties of the short-rate process and the market-
price-of-risk process in an economy of heterogeneous consumers.

There are some issued yet to be explored in this setting. First, while we concentrated on the
case of time-additive utility functions, we should look into whether there is any coherence of our
analysis with recursive or stochastic differential utility functions.8 These utility functions are in
general not time-additive, but they are still tractable and useful for many applications. It would
therefore be reasonable to try to extend our analysis to these utility functions. Second, we have
not investigated whether the heterogeneity of impatience would give rise to most commonly
used properties in the literature on the term structure of interest rates. One of such properties
is mean reversion, so that the drift term of the short-rate process is negative when the short

6Note, however, that when calculating the equity premium, they used the yield to maturity of the U.S.
Treasury Bonds and the yield of stock market indices, while our short rates are instantaneous risk-free interest
rates and our market price of risk is the instantaneous expected rates of return, per unit standard deviation, on
risky assets in excess of short rates.

7Alternatively, as (19) and (20) indicate, the decline in the equity premium could be attributed to the decline
in the volatility of the consumption growth rates, although the volatility is assumed to be constantly equal to
σ in our model. Lettau, Ludvigson, and Wachter (2008, Section 1) gathered some empirical evidences of the
declining consumption volatility.

8I am grateful to Tomoyuki Nakajima for suggesting this line of research.
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rate exceeds some threshold, while it is positive when the short rate goes below the threshold.
It will quite important to identify under what conditions of heterogeneity of impatience the
short-rate process would be mean-reverting.9
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