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Abstract

Arrow’s celebrated theorem of social choice shows that the aggre-
gation of individual preferences into a social ordering cannot make the
ranking of any pair of alternatives depend only on individual prefer-
ences over that pair, unless the fundamental weak Pareto and non-
dictatorship principles are violated. In the standard model of division
of commodities, we investigate how much information about indiffer-
ence hypersurfaces is needed to construct social ordering functions
satisfying the weak Pareto principle and anonymity. We show that
local information such as marginal rates of substitution or the shapes
“within the Edgeworth box” is not enough, and knowledge of substan-
tially non-local information is necessary.

Key words: social choice, preference aggregation, information, in-
dependence of irrelevant alternatives, indifference curves.
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1 Introduction

From Arrow’s celebrated theorem of social choice, it is well known that the
aggregation of individual preferences into a social ordering cannot make the
social ranking of any pair of alternatives depend only on individual prefer-
ences over that pair (this is the famous axiom of Independence of Irrelevant
Alternatives). Or, more precisely, it cannot do so without trespassing basic
requirements of unanimity (the Pareto principle) and anonymity (even in the
very weak version of non-dictatorship). This raises the following question:
What additional information about preferences would be needed in order
to make aggregation of preferences possible, and compatible with the basic
requirements of unanimity and anonymity?
In the last decades, the literature on social choice has explored several

paths and gave interesting answers to this question. The main avenue of
research has been, after Sen [18] and d’Aspremont and Gevers [7], the in-
troduction of information about utilities, and it has been shown that the
classical social welfare functions, and less classical ones, could be obtained
with the Arrovian axiomatic method by letting the social preferences take
account of specific kinds of utility information.
In this paper, we focus on the introduction of additional information

about preferences that is not of the utility sort. In other words, we retain
a framework with purely ordinal and interpersonally non-comparable prefer-
ences. The kind of additional information that we study is about the shapes
of indifference curves, and we ask how much one needs to know about in-
difference curves so as to be able to aggregate individual preferences while
respecting the unanimity and anonymity requirements. The introduction
of this additional information is formulated in terms of weakening Arrow’s
axiom of independence of irrelevant alternatives.
The model adopted here is an economic model, namely, the canonical

model of division of infinitely divisible commodities among a finite set of
agents. We chose to study an economic model rather than the abstract model
that is now commonly used in the theory of social choice1 for two reasons.
First, it allows a more fine-grained analysis of information about preferences,
because it makes it sensible to talk about marginal rates of substitution
and other local notions about indifference curves. Second, in an economic

1Recollect, however, that Arrow’s initial presentations [1, 2] dealt with this economic
model of division of commodities.
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model preferences are naturally restricted, and by considering a restricted
domain we can hope to obtain positive results with less information than
under unrestricted domain.
Our first extension of informational basis is to take account of marginal

rates of substitution. It turns out that such infinitesimally local informa-
tion would not be enough to escape from dictatorship, and we establish an
extension of Arrow’s theorem. Then, it is natural to take account of the
portions of indifference curves in some finitely sized neighborhoods of the
allocations. Based on this additional information, we can construct a non-
dictatorial aggregation rule or social ordering function, but still anonymity
cannot be attained.
The second direction of extending informational basis focuses on indif-

ference curves “within the Edgeworth box”. More precisely, for any two
allocations, we define the smallest vector of total resources that makes both
allocations feasible, and take the portion of the indifference curve through
each allocation in the region below the vector. The introduction of this kind
of information, however, does not help us avoid dictatorship.
The third avenue relies on some fixed monotone path from the origin in

the consumption space, and focuses on the points of indifference curves that
belong to this path. The idea of referring to such a monotone path is due to
Pazner and Schmeidler [16], and may be justified if the path contains relevant
benchmark bundles. Making use of this additional information, and following
Pazner and Schmeidler’s [16] contribution, we can construct a unanimous and
anonymous social ordering function.
Our final, the largest, extension of informational basis is to take whole

indifference curves. Given the above result, a unanimous and anonymous
social ordering function can be constructed on this informational basis.
The motivation for our research draws on many strands of recent and

less recent literature. Attempts to construct social ordering functions and
similar objects embodying unanimity and equity requirements were made
by Suzumura [19, 20] and Tadenuma [21]. The idea that information about
whole indifference curves is sufficient, hinted at by Pazner and Schmeidler
[16] and Maniquet [14], was made more precise in Pazner [15] and was revived
by Bossert, Fleurbaey and Van de gaer [4] and Fleurbaey and Maniquet [8,
9] who were able to construct nicely behaved social ordering functions on
this basis. Campbell and Kelly [5] recently studied essentially the same
issue in an abstract model of social choice, and showed that limited infor-
mation about preferences may be enough. However, their model does not
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have the rich structure of economic environments, and they focus only on
non-dictatorship and do not study how much information is needed for the
stronger requirement of anonymity.
The paper is organized as follows. The next section introduces the frame-

work and the main notions. The results are presented in Section 3. Section
4 concludes. The appendix contains some proofs.

2 The Model and Axioms

2.1 The model

The population is fixed. Let N = {1, ..., n} be the set of agents where
2 ≤ n < ∞. There are � goods indexed by k = 1, ..., � where 2 ≤ � < ∞.
Agent i’s consumption bundle is a vector xi = (xi1, ..., xi�). An allocation is
denoted x = (x1, ..., xn). The set of allocations is Rn�

+ . The set of allocations
such that no individual bundle xi is equal to the zero vector is denoted X.
A preordering is a reflexive and transitive binary relation. Agent i’s

preferences are described by a complete preordering Ri (strict preference Pi,
indifference Ii) on R�

+. A profile of preferences is denoted R = (R1, ..., Rn).
Let R be the set of continuous, convex, and strictly monotonic preferences
over R�

+.
A social ordering function (SOF) is a mapping R̄ defined on Rn, such

that for all R ∈ Rn, R̄(R) is a complete preordering on the set of allocations
Rn�

+ . Let P̄ (R) (resp. Ī(R)) denote the strict preference (resp. indifference)
relation associated to R̄(R).
Let π be a bijection on N. For all x ∈ Rn�

+ , define π(x) = (x
′
1, ..., x

′
n) ∈ Rn�

+

by x′i = xπ(i) for all i ∈ N, and for all R ∈ Rn, define π(R) = (R′
1, ..., R

′
n) ∈

Rn by R′
i = Rπ(i) for all i ∈ N . Let Π be the set of all bijections on N . The

basic requirements of unanimity and anonymity on which we focus in this
paper are the following.

Weak Pareto: ∀R ∈ Rn, ∀x, y ∈ Rn�
+ , if ∀i ∈ N, xiPiyi, then xP̄ (R)y.

Anonymity: ∀R ∈ Rn, ∀x, y ∈ Rn�
+ , ∀π ∈ Π :

xR̄(R)y ⇔ π(x) R̄(π(R)) π(y).

Concerning the non-dictatorship form of anonymity, we only define here
what dictatorship means, for convenience. Notice that it has to do only with
allocations in X, that is, without the zero bundle for any agent.
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Dictatorial SOF: A SOF R̄ is dictatorial if there exists i0 ∈ N such that:

∀R ∈ Rn, ∀x, y ∈ X : xi0Pi0yi0 ⇒ xP̄ (R)y.

2.2 Variants of Independence of Irrelevant Alterna-

tives

The traditional, Arrovian, version of Independence of Irrelevant Alternatives
is:

Independence of Irrelevant Alternatives (IIA): ∀R,R′ ∈ Rn, ∀x, y ∈
Rn�

+ , if ∀i ∈ N , Ri and R
′
i agree on {xi, yi}, then R̄(R) and R̄(R′) agree on

{x, y}.
It is possible to weaken IIA by strengthening the premise. This amounts

to allowing the SOF to make use of more information when ranking each pair
of allocations.
First, we consider making use of marginal rates of substitution.

Economists are used to focus on marginal rates of substitution when as-
sessing the efficiency of an allocation, especially under convexity, since for
convex preferences the marginal rates of substitution determine the half space
in which the upper contour set lies. Moreover, for efficient allocations, the
shadow prices enable one to compute the relative implicit income shares of
different agents, thereby potentially providing a relevant measure of inequal-
ities in the distribution of resources. Therefore, taking account of marginal
rates of substitution is a natural extension of the informational basis of social
choice in economic environments.
Let C(xi, Ri) denote the cone of price vectors that support the upper

contour set for Ri at xi :

C(xi, Ri) = {p ∈ R�|∀y ∈ R�
+, py = pxi ⇒ xiRiy}.

When preferences Ri are strictly monotonic, one has C(xi, Ri) ⊂ R�
++ when-

ever xi � 0.

IIA except Marginal Rates of Substitution (IIA-MRS): ∀R,R′ ∈ Rn,
∀x, y ∈ Rn�

+ , if ∀i ∈ N , Ri and R
′
i agree on {xi, yi}, and

C(xi, Ri) = C(xi, R
′
i),

C(yi, Ri) = C(yi, R
′
i),
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then R̄(R) and R̄(R′) agree on {x, y}.
Marginal rates of substitution give an infinitesimally local piece of in-

formation about indifference hypersurfaces at given allocations. A natural
extension of the informational basis would be to take account of the indiffer-
ence hypersurfaces in some finitely sized neighborhoods of the two allocations.
Define, for any given real number ε > 0,

Bε(xi) = {v ∈ R�
+| max

k∈{1,...,�}
|xik − vk| ≤ ε}

Define
I(xi, Ri) = {z ∈ R�

+ | z Ii xi}.
The set I(xi, Ri) is called the indifference set at xi for Ri.
The next axiom of SOFs is defined for a given ε > 0. Notice that the

larger (the smaller) is the value of ε, the weaker (the stronger) the condition
becomes.

IIA except Indifference Sets in ε-Neighborhoods (IIA-ISεN): Let
ε > 0 be given. ∀R,R′ ∈ Rn, ∀x, y ∈ Rn�

+ , if ∀i ∈ N , Ri and R
′
i agree on

{xi, yi}, and

I(xi, Ri) ∩Bε(xi) = I(xi, R
′
i) ∩Bε(xi),

I(yi, Ri) ∩ Bε(yi) = I(yi, R
′
i) ∩ Bε(yi),

then R̄(R) and R̄(R′) agree on {x, y}.
The second type of extension of informational basis is to focus on the

portions of indifference sets which lie “within the Edgeworth box”. However,
when considering any pair of allocations, the two allocations may need differ-
ent amounts of total resources to be feasible. Therefore we need to introduce
the following notions. For each good k ∈ {1, ..., �}, define

ωk(x, y) ≡ max{
∑
i∈N

xik,
∑
i∈N

yik}.

Let ω(x, y) = (ω1(x, y), ..., ω�(x, y)). The vector ω(x, y) ∈ R�
+ represents the

smallest amount of total resources that makes two allocations x and y feasible.
Then, define

Ω(x, y) =
{
z ∈ R�

+ | z ≤ ω(x, y)
}
.
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The set Ω(x, y) ⊂ R�
+ is the set of consumption bundles that are feasible

with ω(x, y). The following axiom captures the idea that the ranking of two
allocations should depend only on the indifference hypersurfaces over the
region satisfying the feasibility constraint.

IIA except Indifference Sets over Feasible Allocations (IIA-ISFA):
∀R,R′ ∈ Rn, ∀x, y ∈ Rn�

+ , if ∀i ∈ N ,

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
′
i) ∩ Ω(x, y),

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
′
i) ∩ Ω(x, y),

then R̄(R) and R̄(R′) agree on {x, y}.
It will actually be worth considering weaker variants of this axiom, which

rely on radial expansions of the set Ω(x, y). For any set Y ⊂ R� and any
λ ≥ 1, define

λY = {q ∈ R�|λ−1q ∈ Y }.
The next axiom is defined for a given λ ≥ 1. The larger is the value of λ, the
weaker the axiom becomes.

IIA except Indifference Sets over λ-Expanded Feasible Allocations
(IIA-ISλEFA): ∀R,R′ ∈ Rn, ∀x, y ∈ Rn�

+ , if ∀i ∈ N ,

I(xi, Ri) ∩ λΩ(x, y) = I(xi, R
′
i) ∩ λΩ(x, y),

I(yi, Ri) ∩ λΩ(x, y) = I(yi, R
′
i) ∩ λΩ(x, y),

then R̄(R) and R̄(R′) agree on {x, y}.
Combining ε-neighborhoods of two allocations x, y and a radial expansion

of Ω(x, y) as the informational basis, we have the following axiom. Let ε > 0
and λ ≥ 1 be given.
IIA except Indifference Sets in ε-Neighborhoods and over λ-
Expanded Feasible Allocations (IIA-IS[εNλEFA]): ∀R,R′ ∈ Rn,
∀x, y ∈ Rn�

+ , if ∀i ∈ N ,

I(xi, Ri) ∩ [Bε(xi) ∪ λΩ(x, y)] = I(xi, R
′
i) ∩ [Bε(xi) ∪ λΩ(x, y)]

I(yi, Ri) ∩ [Bε(yi) ∪ λΩ(x, y)] = I(yi, R
′
i) ∩ [Bε(yi) ∪ λΩ(x, y)],

then R̄(R) and R̄(R′) agree on {x, y}.
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The third way of extending information about indifference sets is to rely
on a path

Λω0 = {λω0 ∈ R�
++ | λ ∈ R+},

where ω0 ∈ R�
++ is fixed, and to focus on the part of the indifference sets

which belongs to this path. The idea of referring to such a path is due to
Pazner and Schmeidler [16], and may be justified if the path contains relevant
benchmark bundles. The choice of ω0 is not discussed here, but it need not be
arbitrary. For instance, one may imagine that it could reflect an appropriate
equity notion, or it could be the bundle of total resource availability.

IIA except Indifference Sets on Path ω0 (IIA-ISPω0): ∀R,R′ ∈ Rn,
∀x, y ∈ Rn�

+ , if ∀i ∈ N ,
I(xi, Ri) ∩ Λω0 = I(xi, R

′
i) ∩ Λω0 ,

I(yi, Ri) ∩ Λω0 = I(yi, R
′
i) ∩ Λω0,

then R̄(R) and R̄(R′) agree on {x, y}.
The final extension of informational basis that we consider is to introduce

whole indifference hypersurfaces. This condition was already introduced and
studied by Hansson [11] in the abstract model of social choice, who showed
that the Borda rule, which does not satisfy the Arrow IIA condition, satisfies
this constrained variant thereof. Pazner [15] also proposed it, in a study of
social choice in economic environments.

IIA except Whole Indifference Sets (IIA-WIS): ∀R,R′ ∈ Rn, ∀x, y ∈
Rn�

+ , if ∀i ∈ N ,
I(xi, Ri) = I(xi, R

′
i),

I(yi, Ri) = I(yi, R
′
i),

then R̄(R) and R̄(R′) agree on {x, y}.

Lemma 1 Let ε > 0 and λ ≥ 1 be given.

IIA-MRS → IIA-ISεN
↗ ↘

IIA → IIA-ISFA → IIA-ISλEFA → IIA-IS[εNλEFA] → IIA-WIS
↘ ↗

IIA-ISPω0

9



3 How large portions of indifference surfaces

do we have to know?

Let us first recall the formulation of Arrow’s theorem for this model (Bordes
and Le Breton [3]).

Proposition 1 If a SOF R̄ satisfies Weak Pareto and IIA, then it is dicta-
torial.

It turns out, unfortunately, that introducing information about marginal
rates of substitution, in addition to pairwise preferences, does not make room
for the existence of satisfactory SOFs. More formally, weakening IIA into
IIA-MRS does not alter the dictatorship conclusion of Arrow’s theorem.

Proposition 2 If a SOF R̄ satisfies Weak Pareto and IIA-MRS, then it is
dictatorial.

The proof of this Proposition is long and is relegated to the appendix,
but here we sketch the main line of the proof. Since IIA implies IIA-MRS,
Proposition 2 is a generalization of the theorem by Bordes and Le Breton
[3, Theorem 3]. An essential idea of the proofs of Arrow-like theorems in
economic environments (Kalai, Muller and Satterthwaite [13], Bordes and
Le Breton [3], and others) is as follows: First, we find a “free triple”, that
is, three allocations for which any ranking is possible in each individual’s
preferences satisfying the standard assumptions in economics. By applying
Arrow’s theorem for these three allocations, it can be shown that there exists
a “local dictator” for each free triple. Then, we “connect” free triples in a
suitable way to show that these local dictators must be the same individual.
Turning to IIA-MRS, notice first that for each free triple, IIA-MRS works

just as IIA only in the class of preference profiles for which all individuals’
marginal rates of substitution at the three allocations are the same, and
satisfy certain “supporting conditions”. Invoking Arrow’s theorem, we can
only show that there exists a “local dictator” for each free triple in this much
restricted class of preference profiles (Lemmas 2 and 3). The difficulty in the
proof of Proposition 2 lies in extending “local dictatorship” over the class of
all preference profiles. This requires much work to do. See Lemmas 4 and 5
in the Appendix.
Inada [12] also considered marginal rates of substitution in an IIA-like ax-

iom, but the difference from our work is that he looked for a local aggregator
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of preferences, namely a mapping defining a social marginal rate of substi-
tution between goods and individuals, on the basis of individual marginal
rates of substitution. Hence, Inada requires that, for each allocation, social
preferences in an infinitely small neighborhood of the allocation should not
change whenever every agent’s marginal rates of substitution at the alloca-
tion remain the same. By contrast, our IIA-MRS requires that, for each pair
of allocations, social preferences over that pair should not change whenever
every agent’s marginal rates of substitution at each of the two allocations
remain the same. There is no logical relation between Inada’s axiom and
ours.
The next proposition shows that as soon as one switches from IIA-MRS

to IIA-ISεN, the dictatorship result is avoided, even if ε is arbitrarily small.
However, it remains impossible to achieve Anonymity, even for an arbitrarily
large ε.

Proposition 3 Let ε > 0 be given. There exists a SOF that satisfies Weak
Pareto, IIA-ISεN, and is not dictatorial. However, there exists no SOF that
satisfies Weak Pareto, IIA-ISεN and Anonymity.

Proof. The impossibility part is derived directly from Proposition 5 below,
and here we omit the proof.
We prove the possibility part. Define R̄ as follows: xR̄(R)y if ei-

ther x1R1y1 and [I(x1, R1) � Bε(0) or I(y1, R1) � Bε(0)], or x2R2y2 and
[I(x1, R1) ⊆ Bε(0) and I(y1, R1) ⊆ Bε(0)]. For brevity, let Γ(v) denote
[I(v, R1) ⊆ Bε(0)]. Weak Pareto and the absence of dictator are straight-
forwardly satisfied. IIA-ISεN is also satisfied because when Γ(x1) and Γ(y1)
hold, we have Bε(0) ⊆ Bε(x1) ∩ Bε(y1), and therefore Γ(x1) and Γ(y1) re-
main true if the indifference surfaces are kept fixed on Bε(x1) and Bε(y1).
It remains to check transitivity of R̄(R). First, note the following property:
If Γ(v) holds and vR1v

′, then Γ(v′) also holds. Assume that there exist
x, y, z ∈ Rn�

+ such that xR̄(R)yR̄(R)zP̄ (R)x. If Γ(x1), Γ(y1) and Γ(z1) all
hold, this is impossible because one should have x2R2y2R2z2P2x2. If only
one of the three conditions Γ(x1), Γ(y1), Γ(z1) is satisfied, it is similarly im-
possible because one should have x1R1y1R1z1P1x1. Assume Γ(x1) and Γ(y1)
hold, but not Γ(z1). Then, yR̄(R)zP̄ (R)x requires y1R1z1P1x1, which implies
Γ(z1), a contradiction. Assume Γ(x1) and Γ(z1) hold, but not Γ(y1). Then,
xR̄(R)yR̄(R)z requires x1R1y1R1z1, which implies Γ(y1), a contradiction.
Assume Γ(y1) and Γ(z1) hold, but not Γ(x1). Then, zP̄ (R)xR̄(R)y requires
z1P1x1R1y1, which implies Γ(x1), a contradiction.
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Let us next consider the second direction of extending informational basis,
focusing on indifference curves “in the Edgeworth box”. The introduction of
such information about indifference curves, however, cannot help us avoid a
dictatorial SOF.

Proposition 4 If a SOF satisfies Weak Pareto and IIA-ISFA, then it is
dictatorial.

The proof relies on the following lemmas. First, we define a weak form
of IIA:

Weak Independence of Irrelevant Alternatives (WIIA): ∀R,R′ ∈ Rn,
∀x, y ∈ X, if ∀i ∈ N , Ri and R

′
i agree on {xi, yi}, and for no i, xiIiyi, then

R̄(R) and R̄(R′) agree on {x, y}.
A key lemma to prove Proposition 4 is the following:

Lemma 2 If a SOF R̄ satisfies Weak Pareto and IIA-ISFA, then it satisfies
WIIA.

The proof of this lemma is long and relegated in the appendix. We also
define a weak form of dictatorship:

Quasi-Dictatorial SOF: A SOF R̄ is quasi-dictatorial if there exists i0 ∈ N
such that:

∀R ∈ Rn, ∀x, y ∈ X : [xi0Pi0yi0 and � ∃i ∈ N with xi Ii yi]⇒ xP̄ (R)y.

Lemma 3 If a SOF R̄ satisfies Weak Pareto and Weak IIA, then it is quasi-
dictatorial.

Proof. Let R̄ be a SOF that satisfies Weak Pareto and Weak IIA. By an
adaptation of a standard proof of Arrow’s theorem (for instance, Sen [18]), we
can show that for every free triple Y ⊂ X, there exists a quasi-dictator over
(Y,Rn). Then, a direct application of Bordes and Le Breton [3] establishes
quasi-dictatorship of R̄.

It is interesting that in our economic environments, quasi-dictatorship is
equivalent to dictatorship as the next lemma shows.

Lemma 4 If a SOF R̄ is quasi-dictatorial, then it is dictatorial.

12



Proof. Let R̄ be a quasi-dictatorial SOF. Let x, y ∈ X and R ∈ Rn be
such that xi0 Pi0 yi0. By continuity and strict monotonicity of preferences,
there exists x′ ∈ X such that xi0 Pi0 x

′
i0
Pi0 yi0 and for all i ∈ N, either

xi Pi x
′
i Pi yi or yi Ri xi Pi x

′
i. Since R̄ is quasi-dictatorial, it follows that

x P̄ (R) x′ and x′ P̄ (R) y. By transitivity, x P̄ (R) y.

Given these lemmas, the proof of Proposition 4 is straightforward.

Proof of Proposition 4: Let R̄ be a SOF that satisfies Weak Pareto and
IIA-ISFA. By Lemma 2, R̄ satisfies WIIA. Then, by Lemmas 3 and 4, R̄ is
dictatorial.

The proof of this proposition can be immediately adapted to extend the
result to IIA-ISλEFA.
Combining the first and the second extensions of informational ba-

sis amounts to taking indifference hypersurfaces in some finitely sized ε-
neighborhoods of allocations as well as in some radial expansion of the
“Edgeworth box”. By this extension, we allow the social ranking of any
two allocations to depend on the shapes of very large portions of indifference
hypersurfaces around the allocations, and hence the independence condition
becomes very weak. However, incompatibility with anonymity persists no
matter how large the value of ε is.

Proposition 5 Let ε > 0 and λ ≥ 1 be given. There exists a SOF that sat-
isfies Weak Pareto, IIA-IS[εNλEFA], and is not dictatorial. However, there
exists no SOF that satisfies Weak Pareto, IIA-IS[εNλEFA] and Anonymity.

The possibility part is directly implied by Proposition 3 because IIA-
ISεN implies IIA-IS[εNλEFA]. The proof of the impossibility part is in the
appendix.
Going to the third direction of extending informational basis, and fol-

lowing Pazner and Schmeidler’s [16] contribution, we can derive the next
result, which shows that not much information is needed to have an anony-
mous SOF if only we are prepared to accept an externally specified reference
bundle, although it must be substantially non-local information.

Proposition 6 There exists a SOF that satisfies Weak Pareto, IIA-ISPω0

and Anonymity.
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Proof. By continuity and strict monotonicity of preferences, the following
utility functions

ui(xi) = min{α ∈ R+|αω0Rixi}
are well-defined and represent preferences Ri. Let R̄ be defined by:

xR̄(R)y ⇔ min{ui(xi)|i ∈ N} ≥ min{ui(yi)|i ∈ N}.

This SOF clearly satisfies Weak Pareto and Anonymity. It also satisfies IIA-
ISPω0 because whenever I(xi, Ri) ∩ Λω0 = I(xi, R

′
i) ∩ Λω0, we have

min{α ∈ R+|αω0Rixi} = min{α ∈ R+|αω0R
′
ixi}.

Since IIA-ISPω0 implies IIA-WIS, we also have the following corollary.

Corollary 1 There exists a SOF that satisfies Weak Pareto, IIA-WIS and
Anonymity.

Notice that we could have the Strong Pareto property2 as well by relying
on the leximin criterion rather than the maximin for the SOF defined in the
above proof. There are also many examples of SOFs satisfying Weak Pareto,
IIA-WIS and Anonymity. Thus, in addition to these three axioms, we may
add other requirements embodying various equity principles.3

4 Conclusion

The construction of a non-dictatorial Arrovian social ordering function, in a
framework with purely ordinal, interpersonally non-comparable preferences,
requires information about the shape of indifference curves that goes well be-
yond infinitesimally local data such as marginal rates of substitution or data

2Strong Pareto: ∀x, y ∈ Rn�
+ , ∀R ∈ Rn if ∀i ∈ N, xiRiyi, then xR̄(R)y and if, in

addition, ∃i ∈ N, xiPiyi, then xP̄ (R)y.
3Notice that Strong Pareto and Anonymity already entail a version of the Suppes

grading principle: for all R ∈ Rn, all x, y, if there are i, j such that Ri = Rj, xiPiyj and
xjPiyi, and for h �= i, j, xh = yh, then xP̄ (R)y. Notice also that it is easy to construct SOFs
satisfying Strong Pareto, IIA-WIS (or IIA-ISPω0), Anonymity and the following version of
the Hammond equity axiom (Hammond [10]): for all R ∈ Rn, and all x, y ∈ Rn�

+ , if there
are i, j such that Ri = Rj, yiPixiPixjPiyj , and for all h �= i, j, xh = yh, then xP̄ (R)y.
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“within the Edgeworth box”. On the basis of information in some finitely
sized neighborhoods, one can construct a non-dictatorial social ordering func-
tion, but still cannot have an anonymous one. Only substantially non-local
information about indifference curves enables one to construct a Paretian
and anonymous social ordering function. These are the main messages of
this paper, in which we proved two extensions of Arrow’s impossibility theo-
rem, and several possibility results. We hope that our paper, more broadly,
contributes to clarifying the informational foundations in the theory of social
choice.
There are limits to our work which may be noticed here, and call for

further research. First, we study a particular economic model, and it would
be worth analyzing the same issues in other models such as the standard
abstract model of social choice or other economic models, in particular models
with public goods (the case of consumption externalities in our model could
also be subsumed under the case of public goods). Second, the information
about indifference curves is a complex set of object, and our analysis is far
from being exhaustive on the pieces of data which can be extracted from
this set. We have focussed on what seemed to us the most natural parts of
indifference curves to which one may want to refer in social evaluation of
allocations, namely, the marginal rates of substitution, the Edgeworth box
(bundles which are achievable by redistributing the considered allocations),
and reference rays. But there may be other ways of considering indifference
curves. For instance, it would be nice to have a measure of the degree to which
a given piece of information is local, and the connection between this work
and topological social choice (e.g. Chichilnisky [6]) might be worth exploring.
Third, there may be other kinds of interesting additional information. For
instance, Roberts [17] considered introducing information about utilities and
about non-local preferences at the same time, and was able to characterize
the Nash social welfare function on this basis. There certainly are many
avenues of research along these lines. The purpose of this paper would be
well-served if it could open the gate towards these enticing avenues.
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Appendix

A.1 Proof of Proposition 2

The proof of Proposition 2 relies on the following lemmas.
Let Y ⊂ X be a given finite subset of X. Let i ∈ N be given. Define

Yi = {yi ∈ R�
+| ∃y−i ∈ R(n−1)�

+ , (yi, y−i) ∈ Y }. Let Q denote the set of convex
cones in R�

++. For each yi ∈ Yi, let Q(yi) ∈ Q be given. We say that the set
Yi satisfies the supporting condition with respect to {Q(yi)| yi ∈ Yi} if for all
yi ∈ Yi, all q ∈ Q(yi), and all y

′
i ∈ Yi with y

′
i �= yi, q · yi < q · y′i. Define

R(Yi, {Q(yi)| yi ∈ Yi}) = {Ri ∈ R| ∀yi ∈ Yi, C(yi, Ri) = Q(yi)}.

The set of all preorderings on Yi is denoted by O(Yi). For any Ri ∈ R, Ri|Yi

denotes the restriction of Ri on Yi
4. For any R′⊂ R, let R′|Yi = {Ri|Yi | Ri ∈

R′}. For any xi ∈ X and any Ri ∈ R, let U(xi, Ri) = { x′i ∈ X | x′i Ri xi }
denote the (closed) upper contour set of xi for Ri.

Lemma 5 If a finite set Yi ⊂ R�
+ satisfies the supporting condition with

respect to {Q(yi)| yi ∈ Yi}, then R(Yi, {Q(yi)|yi ∈ Yi})|Yi = O(Yi).

Proof. We have only to show that O(Yi) ⊆ R(Yi, {Q(yi)|yi ∈ Yi})|Yi. Let R
′

∈ O(Yi) be any preordering on Yi. Construct a preordering Ri ∈ R so that
the upper contour set of each yi ∈ Yi is defined as follows. Let xi ∈ Yi be
such that for all yi ∈ Yi, yi R

′
i xi. Define Y

1
i = {yi ∈ Yi | yi I

′
i xi}. For each

a ∈ R�
+ and each q ∈ R�

++, define H(a, q) = {b ∈ R�
+ | q · b ≥ q · a}. Let

U(xi, Ri) =
⋂

yi∈Y 1
i


 ⋂

q∈Q(yi)

H(yi, q)




Let I(xi, Ri) be the boundary of U(xi, Ri). Clearly, for all yi ∈ Y 1
i , C(yi, Ri)

= Q(yi). We also have that for all yi ∈ Yi\Y 1
i , and for all x

′
i ∈ I(xi, Ri),

yi Pi x
′
i. Given δ > 0, let (1 + δ)U(xi, Ri) = {x′i ∈ R�

+ | ∃ai ∈ U(xi, Ri),
x′i = (1 + δ)ai}, and let (1 + δ)I(xi, Ri) be the boundary of (1 + δ)U(xi, Ri).
For sufficiently small δ, we have that for all yi ∈ Yi\Y 1

i , and for all x
′
i ∈

4Namely, Ri|Yi is the preordering on Yi such that for all xi, yi ∈ Yi, xi Ri|Yi yi ⇐⇒
xiRiyi.
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(1 + δ)I(xi, Ri), yiPix
′
i. Let zi ∈ Yi\Y 1

i be such that for all yi ∈ Yi\Y 1
i , yi R

′
i

zi. Define Y
2
i = {yi ∈ Yi\Y 1

i | yi I
′
i zi}. Let

U(zi, Ri) = (1 + δ)U(xi, Ri)
⋂ 

 ⋂
yi∈Y 2

i


 ⋂

q∈Q(yi)

H(yi, q)






Let I(zi, Ri) be the boundary of U(zi, Ri). By definition, for all yi ∈ Y 2
i ,

C(yi, Ri) = Q(yi). We have that for all yi ∈ Yi\ (Y 1
i ∪ Y 2

i ) , and for all x
′
i ∈

I(zi, Ri), yi Pi x
′
i. Similarly we can construct the upper contour set of each

yi ∈ Yi\ (Y 1
i ∪ Y 2

i ) . By its construction, Ri ∈ R(Yi, {Q(yi)|yi ∈ Yi}) and
Ri|Yi = R

′. Thus, R′ ∈ R(Yi, {Q(yi)|yi ∈ Yi})|Yi .

Let R̄ be a social ordering function. Let Y ⊆ X and R′ ⊆ Rn be given.
We say that agent i0 ∈ N is a local dictator for R̄ over (Y,R′) if for all
x, y ∈ Y , and all R ∈ R′, xi0Pi0yi0 implies xP̄ (R)y.

Lemma 6 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. Let Y ⊂ X be a finite subset of X such that |Y | ≥ 3.5 Sup-
pose that for all i ∈ N , Yi satisfies the supporting condition with respect
to {Q(yi)| yi ∈ Yi}. Then, there exists a local dictator i0 ∈ N for R̄ over
(Y,

∏
i∈N R(Yi, {Q(yi)| yi ∈ Yi})).

Proof. For all R,R′ ∈ ∏
i∈N R(Yi, {Q(yi)| yi ∈ Yi}), all y ∈ Y, and all

i ∈ N, C(yi, Ri) = C(yi, R
′
i). Since R̄ satisfies IIA-MRS, we have that for all

x, y ∈ Y, and all R,R′ ∈ ∏
i∈N R(Yi, {Q(yi)| yi ∈ Yi}), if for all i ∈ N, Ri

and R′
i agree on {xi, yi}, then R̄(R) and R̄(R′) agree on {x, y}. By Lemma 5,

for all i ∈ N,R(Yi, {Q(yi)|yi ∈ Yi})|Yi = O(Yi). Hence, by Arrow’s Theorem,
there exists a local dictator for R̄ over (Y,

∏
i∈N R(Yi, {Q(yi)| yi ∈ Yi})).

We say that a subset Y of X is free for agent i if R|Yi = O(Yi). It is
free if it is free for all i ∈ N. If Y contains two elements, it is a free pair.
If Y contains three elements, it is a free triple. Note that a set {x, y} is a
free pair for i ∈ N if and only if for some k, k′ ∈ {1, · · · , �}, xik > yik and
yik′ > xik′. Given two consumption bundles xi, yi ∈ R�

+, define xi ∧ yi ∈ R�
+

as (xi ∧ yi)k = min{xik, yik} for all k ∈ {1, · · · , �}.
Lemma 7 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. If {x, y} ⊂ X is a free pair, then there exists a local dictator for
R̄ over ({x, y},Rn).

5Given a set A, |A| denotes the cardinality of A.
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Proof. Let R̄ be a social ordering function satisfying Weak Pareto and IIA-
MRS. Let {x, y} ⊂ X be a free pair. Let

K1 = {k ∈ {1, · · · , �} | xik > yik}
K2 = {k ∈ {1, · · · , �} | xik < yik}

Since {x, y} is a free pair, K1, K2 �= ∅.
Step 1 : For each i ∈ N , we define two consumption bundles zi, wi ∈ X as
follows:

zi = xi ∧ yi +
1

2

[
2

3
(xi − xi ∧ yi) +

1

3
(yi − xi ∧ yi)

]
(1)

wi = xi ∧ yi +
1

2

[
1

3
(xi − xi ∧ yi) +

2

3
(yi − xi ∧ yi)

]
(2)

Figure 1 illustrates the bundles xi, yi, xi ∧ yi, zi, wi, and also bi, vi, ti, which
are defined in the next step. Let q ∈ R�

++. Then, q · yi < q ·wi if and only if

2

3

∑
k∈K2

qk(yik − xik) <
1

6

∑
k∈K1

qk(xik − yik) (3)

Since K1 �= ∅, the right-hand-side of (3) can be arbitrarily large as (qk)k∈K1

become large, (qk)k∈K2 being constant. Hence, there exists a price vector
q(yi) ∈ R�

++ that satisfies inequality (3). With some calculations, it can be
shown that q(yi) · yi < q(yi) · zi and q(yi) · yi < q(yi) · xi.
Similarly, for each a ∈ {xi, zi, wi}, we can find a price vector q(a) ∈ R�

++

such that for all a′ ∈ {xi, zi, wi, yi} with a′ �= a, q(a) · a < q(a) · a′. Hence,
the set Y 0

i = {xi, zi, wi, yi} satisfies the supporting condition with respect to
{q(xi), q(zi), q(wi), q(yi)}.6
Let z = (zi)i∈N and w = (wi)i∈N . Let Y 0 = {x, z, w, y}.

By Lemma 6, there exists a local dictator i0 ∈ N for R̄ over
(Y 0,

∏
i∈N R(Y 0

i , {q(xi), q(zi), q(wi), q(yi)}).
Step 2: We will show that agent i0 is a local dictator for R̄ over ({x, y},Rn).
Suppose, on the contrary, that there exists a preference profile R0 ∈ Rn

such that (i) xi0P
0
i0
yi0 and yR̄(R

0)x or (ii) yi0P
0
i0
xi0 and xR̄(R

0)y. Without
loss of generality, suppose that (i) holds. Let Y 1 = {z, w, y}. Since agent i0 is
the local dictator for R̄ over (Y 0,

∏
i∈N R(Y 0

i , {q(xi), q(zi), q(wi), q(yi)}), he
6With a slight abuse of notation, we are writing q(·) for Q(·) = {αq(·) | α > 0}.
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is also the local dictator for R̄ over (Y 1,
∏

i∈N R(Y 1
i , {q(zi), q(wi), q(yi)}).

(Otherwise, by Lemma 6, there exists a local dictator j �= i0
for R̄ over (Y 1,

∏
i∈N R(Y 1

i , {q(zi), q(wi), q(yi)}), and we can con-
struct a preference profile R ∈ ∏

i∈N R(Y 0
i , {q(xi), q(zi), q(wi), q(yi)}) ⊂∏

i∈N R(Y 1
i , {q(zi), q(wi), q(yi)}) such that zi0Pi0wi0 and wjPjzj. Hence we

must have zP̄ (R)w and wP̄ (R)z, which is a contradiction.)
We define two allocations v, t ∈ X in the following steps. Let i ∈ N . First,

define bi ∈ R�
+ as follows: If for all q ∈ C(xi, R

0
i ), q · (yi − xi) ≥ 0, then let

bi = yi. If for some q ∈ C(xi, R
0
i ), q ·(yi−xi) < 0, then let θ > 0 be a positive

number such that for all q ∈ C(xi, R
0
i ), q·[yi + θ(yi − xi ∧ yi)− xi] > 0. Since

q ∈ R�
++ by strict monotonicity of preferences, and yi − xi ∧ yi > 0, such a

number θ exists. Then, define bi = yi+ θ(yi−xi ∧ yi). By definition, bi > yi,
and for all q ∈ C(xi, R

0
i ), q · (bi − xi) > 0. Define

vi = bi + 2(bi − xi ∧ yi)

Then, vi > bi > yi, and for all q ∈ C(xi, R
0
i ), q · (vi − xi) > 0.

Next, define

ti = xi ∧ yi +
1

2

[
2

3
(vi − xi ∧ yi) +

1

3
(wi − xi ∧ yi)

]

Then,

ti = bi +
1

6
(wi − xi ∧ yi) > bi

and for all q ∈ C(xi, R
0
i ), q · xi < q · ti.

As in Step 1, we can find price vectors q(vi), q(ti) ∈ R�
++ such that q(vi) ·

vi < q(vi) · a for all a ∈ {xi, zi, wi, ti}, and q(ti) · ti < q(ti) · a for all a ∈
{xi, zi, wi, vi}.
On the other hand, because vi > yi and ti > yi, we have that q(zi) · zi <

q(zi) · a for all a ∈ {ti, vi}, and q(wi) · wi < q(wi) · a for all a ∈ {ti, vi}.
So far we have shown that

(i) the set Y 1
i = {xi, ti, vi} satisfies the supporting condition with respect to

{C(xi, R
0
i ), q(ti), q(vi)}.

(ii) the set Y 2
i = {zi, wi, ti, vi} satisfies the supporting condition with respect

to {q(zi), q(wi), q(ti), q(vi)}.
Let v = (vi)i∈N and t = (ti)i∈N . Let Y 1 = {x, t, v} and Y 2 =

{z, w, t, v}. By Lemma 6, there exist a local dictator i1 ∈ N for R̄ over
(Y 1,

∏
i∈N R(Y 1

i , {C(xi, R
0
i ), q(ti), q(vi)}), and a local dictator i2 ∈ N for R̄
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over (Y 2,
∏

i∈N R(Y 2
i , {q(zi), q(wi), q(ti), q(vi)}). Recall that agent i0 ∈ N is

the local dictator for R̄ over (Y 0,
∏

i∈N R(Y 0
i , {q(zi), q(wi), q(yi)}). Let R1 ∈

Rn be a preference profile such that for all i ∈ N , C(xi, R
1
i ) = C(xi, R

0
i ),

and for all ai ∈ {ti, vi, wi, yi, zi}, C(ai, R
1
i ) = {q(ai)}, and such that

xi0P
1
i0
zi0P

1
i0
wi0P

1
i0
ti0P

1
i0
vi0P

1
i0
yi0

and for all i ∈ N with i �= i0, xiP
1
i viP

1
i tiP

1
i wiP

1
i ziP

1
i yi

Since R1 ∈∏
i∈N R(Y 0

i , {q(zi), q(wi), q(yi)}, and agent i0 is the local dictator
for R̄ over (Y 0,

∏
i∈N R(Y 0

i , {q(zi), q(wi), q(yi)}), we have zP̄ (R1)w. Because
R1 ∈ ∏

i∈N R(Y 2
i , {q(zi), q(wi), q(ti), q(vi)}, this implies that i0 = i2. Hence,

we have tP̄ (R1)v. Since R1 ∈∏
i∈N R(Y 1

i , {C(xi, R
0
i ), q(ti), q(vi)}, it follows

that i0 = i1.
Let R2 ∈ Rn be a preference profile such that xi0P

2
i0
vi0 and for all

i ∈ N , R2
i |{xi,yi} = R0

i |{xi,yi}, and C(xi, R
2
i ) = C(xi, R

0
i ), C(ti, R

2
i ) =

{q(ti)}, C(vi, R
2
i ) = {q(vi)} and C(yi, R

2
i ) = C(yi, R

0
i ). Since agent i0 ∈ N

is the local dictator for R̄ over (Y 1,
∏

i∈N R(Y 1
i , {C(xi, R

0
i ), q(ti), q(vi)}), we

have that xP̄ (R2)v. Recall that for all i ∈ N , vi > yi. Hence, by strict
monotonicity of preferences, viP

2
i yi for all i ∈ N . Because the social order-

ing function R̄ satisfies Weak Pareto, we have vP̄(R2)y. By transitivity of
R̄, xP̄ (R2)y. However, since R̄ satisfies IIA-MRS, and yR̄(R0)x, we must
have yR̄(R2)x. This is a contradiction.

Lemma 8 Let R̄ be a social ordering function satisfying Weak Pareto and
IIA-MRS. If {x, y, z} ⊂ X is a free triple, then there exists a local dictator
for R̄ over ({x, y, z},Rn).

Proof. By Lemma 7, there exist a local dictator i0 over ({x, y},Rn), a local
dictator i1 over ({y, z},Rn), and a local dictator i2 over ({x, z},Rn). Suppose
that i0 �= i1. Let R ∈ Rn be a preference profile such that xi0Pi0yi0 , yi1Pi1zi1,
and zi2Pi2xi2. Then, we have xP̄(R)yP̄ (R)zP̄ (R)x, which contradicts the
transitivity of R̄(R). Hence, we must have i0 = i1. By the same argument,
we have i0 = i1 = i2.

Proof of Proposition 2: Let R̄ be a social ordering function satisfying
Weak Pareto and IIA-MRS. By Lemma 7, for every free pair {x, y} ⊂ X,
there exists a local dictator over ({x, y},Rn). By Lemma 8 and Bordes and Le
Breton [3, Theorem 2], these dictators must be the same individual. Denote
the individual by i0. It remains to show that for any pair {x, y} that is not
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free, i0 is the local dictator over ({x, y},Rn). Suppose, on the contrary, that
there exist {x, y} ⊂ X and R ∈ Rn such that {x, y} is not a free pair, and
xi0Pi0yi0 but yR̄(R)x. Define zi0 ∈ R�

+ as follows.
Case 1: {x, y} is a free pair for i0.
For all λ ∈]0, 1[, {λx+ (1− λ)y, x} and {λx+ (1− λ)y, y} are free pairs for
i0. By continuity, there exists λ

∗ such that xi0Pi0 [λ
∗xi0 + (1 − λ∗)yi0]Pi0yi0.

Then, let zi0 = λ
∗xi0 + (1− λ∗)yi0.

Case 2: {x, y} is not a free pair for i0.
Then, for all k ∈ {1, · · · , �}, xi0k ≥ yi0k with at least one strict inequality.
Note that y �= 0.
Case 2-1: There exists k′ such that for all k ∈ {1, · · · , �} with k �= k′,
xi0k = yi0k and yi0k′ > 0.
Then, xi0k′ > yi0k′ > 0. Given ε > 0, define wi0 ∈ R�

+ as wi0k′ = yi0k′

and for all k �= k′, wi0k = yi0k + ε. For sufficiently small ε, we have
xi0Pi0wi0Pi0yi0. Given δ > 0, define ti0 ∈ R�

+ as ti0k′ = wi0k′ − δ and for
all k �= k′, ti0k = wi0k. For sufficiently small δ, we have xi0Pi0ti0Pi0yi0. More-
over, {t, x} and {t, y} are free pairs for i0. Then, let zi0 = ti0.
Case 2-2: There exists k′ such that for all k ∈ {1, · · · , �} with k �= k′,
xi0k = yi0k and yi0k′ = 0.
Then, for all k ∈ {1, · · · , �} with k �= k′, xi0k = yi0k > 0. Let k

′′ �= k′. Given
ε > 0, define wi0 ∈ R�

+ as wi0k′′ = xi0k′′ − ε and for all k �= k′′, wi0k = xi0k.
For sufficiently small ε, we have xi0Pi0wi0Pi0yi0. Given δ > 0, define ti0 ∈ R�

+

as ti0k′ = wi0k′ + δ and for all k �= k′, ti0k = wi0k. For sufficiently small δ, we
have xi0Pi0ti0Pi0yi0. Moreover, {t, x} and {t, y} are free pairs for i0. Then,
let zi0 = ti0.
Case 2-3: There exist k′, k′′ ∈ {1, · · · , �} with k′ �= k′′, xi0k′ > yi0k′ and
xi0k′′ > yi0k′′ .
Let k∗ be such that yi0k∗ > 0. Given ε > 0, define wi0 ∈ R�

+ as wi0k∗ =
yi0k∗ − ε and for all k �= k∗, wi0k = xi0k. For sufficiently small ε, we have
xi0Pi0wi0Pi0yi0. Let k

∗∗ �= k∗.Given δ > 0, define ti0 ∈ R�
+ as ti0k∗∗ = wi0k∗∗+δ

and for all k �= k∗∗, ti0k = wi0k. For sufficiently small δ, we have xi0Pi0ti0Pi0yi0.
Moreover, {t, x} and {t, y} are free pairs for i0. Then, let zi0 = ti0.
Next, for each i �= i0, let zi ∈ R�

+ be such that {z, x} and {z, y} are free
pairs for i. By the same construction as above, we can find such zi ∈ R�

+

for each i. Let z = (zi)i∈N ∈ Rn�
+ . Since i0 is the dictator over all free pairs,

we have that xP̄ (R)z and zP̄ (R)y. By transitivity of R̄, we have xP̄ (R)y,
which contradicts the supposition that yR̄(R)x.�
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A.2 Proof of Lemma 2

To prove Lemma 2, we need an auxiliary lemma. Define

X1 = {xi ∈ R�
+ \ {0} | ∀k ≥ 2, xik = 0}

X2 = {xi ∈ R�
+ \ {0} | ∀k �= 2, xik = 0}.

Lemma 9 For all Ri ∈ R, and all x, y ∈ X, there exists R∗
i ∈ R such that

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
∗
i ) ∩ Ω(x, y)

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
∗
i ) ∩ Ω(x, y)

I(xi, R
∗
i ) ∩X1 �= ∅

I(yi, R
∗
i ) ∩X1 �= ∅

Proof. Let Ri ∈ R and x, y ∈ X be given. Without loss of generality, assume
that yi Ri xi. Define A = I(xi, Ri) ∩ Ω(x, y) and

U(xi, R
∗
i ) =

⋂
a∈A


 ⋂

q∈C(a,Ri)

H(a, q)




where we recall that H(a, q) = {b ∈ R�
+ | q · b ≥ q · a}. Let I(xi, R

∗
i ) be the

boundary of U(xi, R
∗
i ).

Define a function g : A → R+ as follows: For every a ∈ A, if (a1 +
1, 0, . . . , 0) Pi a, then let g(a) = 0, and otherwise, let g(a) be such that
(a1 + 1, g(a)a2, . . . , g(a)a�) Ii a. By strict monotonicity of Ri, g(a) < 1.
By continuity of Ri, g is continuous. For every a ∈ A, let b(a) = (a1 +
1, g(a)a2, . . . , g(a)a�). Define f : A→ X1 by

f(a) = a +
1

1− g(a) [b(a)− a]

=

(
a1 +

1

1− g(a) , 0, . . . , 0
)
.

Since b(a) Ri a, it follows that for every q ∈ C(a, Ri), q · b(a) ≥ q · a, and so
q · f(a) ≥ q · a. Hence, f(a) ∈ H(a, q).
The function f is continuous, and the set A is compact and nonempty.

Hence, the set f(A) is compact and nonempty. Therefore, there exists a∗ ∈ A
such that ||f(a∗)|| = maxa∈A ||f(a)|| = maxa∈A

[
a1 +

1
1−g(a)

]
. Then, for all
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a ∈ A, and all q ∈ C(a, Ri), since f(a) ∈ H(a, q) and f(a∗) ≥ f(a), we have
f(a∗) ∈ H(a, q). Thus, f(a∗) ∈ U(xi, R

∗
i ), which proves that U(xi, R

∗
i )∩X1 �=

∅ and I(xi, R
∗
i ) ∩X1 �= ∅.

If yi Ii xi, then we are done. Assume that yi Pi xi. Define

U(yi, R
∗
i ) =

⋂
a∈I(yi,Ri)∩Ω(x,y)


 ⋂

q∈C(a,Ri)

H(a, q)


 .

There exists δ > 0 such that for all zi ∈ [(1 + δ)Ii(xi, Ri)] ∩ Ω(x, y), yi Pi zi.
Define

Ũ(yi, R
∗
i ) = U(yi, R

∗
i ) ∩ (1 + δ)U(xi, R

∗
i )

Then, let I(yi, R
∗
i ) be the boundary of Ũ(yi, R

∗
i ). Note that I(xi, R

∗
i ) ∩

I(yi, R
∗
i ) = ∅. A similar argument as above shows that U(yi, R

∗
i ) ∩X1 �= ∅.

Since U(xi, R
∗
i ) ∩ X1 �= ∅, we have [(1 + δ)U(xi, R

∗
i )] ∩ X1 �= ∅. Thus,

Ũ(yi, R
∗
i ) ∩X1 �= ∅ and I(yi, R

∗
i ) ∩X1 �= ∅.

Proof of Lemma 2.
Let R,R′ ∈ Rn, x, y ∈ X be such that for all i ∈ N , Ri and R

′
i agree on

{xi, yi}, and for no i ∈ N, xi Ii yi. Assume that xP̄ (R)y.
By Lemma 9, there exists R∗ ∈ Rn such that for all i ∈ N,

I(xi, Ri) ∩ Ω(x, y) = I(xi, R
∗
i ) ∩ Ω(x, y)

I(yi, Ri) ∩ Ω(x, y) = I(yi, R
∗
i ) ∩ Ω(x, y)

I(xi, R
∗
i ) ∩X1 �= ∅

I(yi, R
∗
i ) ∩X1 �= ∅,

and similarly there exists R′∗ ∈ Rn such that for all i ∈ N, ,

I(xi, R
′
i) ∩ Ω(x, y) = I(xi, R

′∗
i ) ∩ Ω(x, y)

I(yi, R
′
i) ∩ Ω(x, y) = I(yi, R

′∗
i ) ∩ Ω(x, y)

I(xi, R
′∗
i ) ∩X2 �= ∅

I(yi, R
′∗
i ) ∩X2 �= ∅.

Define x1, y1 ∈ Xn
1 by {x1

i} = I(xi, R
∗
i ) ∩ X1 and {y1

i } = I(yi, R
∗
i ) ∩ X1

for all i ∈ N. Notice that for all i ∈ N, x1
i1 > 0, y1

i1 > 0 because x, y ∈ X
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and preferences are strictly monotonic. Construct x1∗, y1∗ ∈ Xn
1 as follows:

for all i ∈ N ,

x1∗
i = x1

i +
1

3

∣∣x1
i − y1

i

∣∣
y1∗

i = max

{
1

2
y1

i , y
1
i −

1

3

∣∣x1
i − y1

i

∣∣} .
Notice that for all i ∈ N,

x1∗
i1 > y1∗

i1 ⇔ xiPiyi

y1∗
i1 > x1∗

i1 ⇔ yiPixi.

By Weak Pareto, x1∗P̄ (R∗)x and yP̄ (R∗)y1∗. By IIA-ISFA, xP̄ (R∗)y. There-
fore, by transitivity,

x1∗P̄ (R∗)y1∗.

Now, define x2, y2 ∈ Xn
2 by {x2

i} = I(xi, R
′∗
i )∩X2 and {y2

i } = I(yi, R
′∗
i )∩

X2 for all i ∈ N. Again, x2
i2 > 0, y

2
i2 > 0 for all i ∈ N. Construct x2∗, y2∗ ∈ Xn

2

as follows: for all i ∈ N ,

x2∗
i = max

{
1

2
x2

i , x
2
i −

1

3

∣∣x2
i − y2

i

∣∣}

y2∗
i = y2

i +
1

3

∣∣x2
i − y2

i

∣∣ .
Notice that for all i ∈ N,

x2∗
i2 > y2∗

i2 ⇔ xiP
′
iyi ⇔ xiPiyi ⇔ x1∗

i1 > y
1∗
i1

y2∗
i2 > x2∗

i2 ⇔ yiP
′
ixi ⇔ yiPixi ⇔ y1∗

i1 > x
1∗
i1 .

By Weak Pareto, xP̄ (R′∗)x2∗ and y2∗P̄ (R′∗)y.
Let R∗∗ ∈ Rn be such that for all i ∈ N,

x2∗
i P

∗∗
i x

1∗
i and y1∗

i P
∗∗
i y

2∗
i .

Notice that for all i ∈ N,

I(x1∗
i , R

∗∗
i ) ∩ Ω(x1∗, y1∗) = I(x1∗

i , R
∗
i ) ∩ Ω(x1∗, y1∗) = {x1∗

i },
I(y1∗

i , R
∗∗
i ) ∩ Ω(x1∗, y1∗) = I(y1∗

i , R
∗
i ) ∩ Ω(x1∗, y1∗) = {y1∗

i }.
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Therefore, by IIA-ISFA, x1∗P̄ (R∗∗)y1∗. By Weak Pareto, x2∗P̄ (R∗∗)x1∗ and
y1∗P̄ (R∗∗)y2∗, so that by transitivity, x2∗P̄ (R∗∗)y2∗.
Now, we also have that for all i ∈ N,

I(x2∗
i , R

∗∗
i ) ∩ Ω(x2∗, y2∗) = I(x2∗

i , R
′∗
i ) ∩ Ω(x2∗, y2∗) = {x2∗

i },
I(y2∗

i , R
∗∗
i ) ∩ Ω(x2∗, y2∗) = I(y2∗

i , R
′∗
i ) ∩ Ω(x2∗, y2∗) = {y2∗

i }.

By IIA-ISFA again, x2∗P̄ (R′∗)y2∗. By transitivity, we deduce xP̄ (R′∗)y. Fi-
nally, by IIA-ISFA,

xP̄ (R′)y.

We have proved that xP̄ (R)y implies xP̄ (R′)y,. It follows from symmetry
of the argument that yP̄ (R)x implies yP̄ (R′)x, and that xĪ(R)y implies
xĪ(R′)y.

A.3 Proof of Proposition 5

In order to prove the impossibility part, it is convenient to consider various
possible sizes of the population. Let ε > 0 and λ ≥ 1 be given. Suppose,
to the contrary, that there exists a SOF R̄ that satisfies Weak Pareto, IIA-
IS[εNλEFA] and Anonymity.

Case n = 2. Consider the consumption bundles x = (10ε, (2ε)/(2λ),0, ...),
y = (20ε, (2ε)/(2λ),0, ...), z = ((2ε)/(2λ),20ε, 0, ...), w =
((2ε)/(2λ),10ε, 0, ...). Let preference relations R1 ∈ R and R2 ∈ R be
defined as follows.
(i) On the subset

S1 = {v ∈ R�
+ | ∀i ∈ {3, ..., �}, vi = 0 and v2 ≤ min{v1, 2ε}}

we have
v R1 v

′ ⇔ v1 + 2v2 ≥ v′1 + 2v′2,
and on the subset

S2 = {v ∈ R�
+ | ∀i ∈ {3, ..., �}, vi = 0 and v1 ≤ min{v2, 2ε}},

we have
v R1 v

′ ⇔ 2v1 + v2 ≥ 2v′1 + v′2.
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(ii) On Bε(x) ∪Bε(y),

v R1 v
′ ⇔ v1 + 2v2 +

�∑
k=3

vk ≥ v′1 + 2v′2 +
�∑

k=3

v′k,

and on Bε(z) ∪Bε(w),

v R1 v
′ ⇔ 2v1 + v2 +

�∑
k=3

vk ≥ 2v′1 + v′2 +
�∑

k=3

v′k.

(iii) Note that the projection of Bε(x)∪Bε(y) on the subspace of good 1 and
good 2, namely, [Bε(x) ∪ Bε(y)] ∩ {v ∈ R�

+ : | : ∀i ∈ {3, ..., �}, vi = 0}, is
included in S1, and the projection of Bε(z)∪Bε(w) on the subspace of good
1 and good 2 is included in S2. Since

[w1 + (2ε− w1)] + 2 [w2 − 2 (2ε− w1)] > x1 + 2x2

and
2 [y1 − 2 (2ε− y2)] + [y2 + (2ε − y2)] > 2z1 + z2,

it is possible to complete the definition of R1 so that w P1 x and y P1 z.
Then, define R2 so that it coincides with R1 on S1, on S2, and on Bε(a) for
all a ∈ {x, y, z, w}. Similarly, it is possible to complete the definition of R2

so that x P2 w and z P2 y. Figure 2 illustrates this construction (for λ = 1).
If the profile of preferences is R = (R1, R2), by Weak Pareto we have

(y, x)P̄(R)(z, w) and (w, z)P̄ (R)(x, y).

If the profile of preferences is R′ = (R1, R1), by Anonymity we have

(y, x)Ī(R′)(x, y) and (w, z)Ī(R′)(z, w).

Notice that λΩ(x, y) ⊆ S1 ∪ S2 and λΩ(z, w) ⊆ S1 ∪ S2. Since R1 and R2

coincide on S1, on S2, and on Bε(a) for all a ∈ {x, y, z, w}, it follows from
IIA-IS[εNλEFA] that

(y, x)Ī(R′)(x, y) ⇔ (y, x)Ī(R)(x, y)

and (w, z)Ī(R′)(z, w) ⇔ (w, z)Ī(R)(z, w).

By transitivity, (x, y)P̄(R)(x, y), which is impossible.
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Case n = 3. Consider the consumption bundles x =
(10ε, (2ε)/(3λ),0, ...), y = (20ε, (2ε)/(3λ),0, ...), t = (15ε, (2ε)/(3λ),0, ...),
z = ((2ε)/(3λ),20ε, 0, ...), w = ((2ε)/(3λ),10ε, 0, ...), r =
((2ε)/(3λ),15ε, 0, ...). Let preference relations R1, R2 and R3 be defined as
above on the subset S1, on S2, and on Bε(a) for all a ∈ {x, y, z, w, t, r}. And
complete their definitions so that yP1z, wP1x, tP2r, zP2y, xP3w, rP3t.
If the profile of preferences is R = (R1, R2, R3), by Weak Pareto we have

(y, t, x)P̄(R)(z, r, w) and (w, z, r)P̄ (R)(x, y, t).

If the profile of preferences is R′ = (R1, R1, R1), by Anonymity we have

(y, t, x)Ī(R′)(x, y, t) and (w, z, r)Ī(R′)(z, r, w).

Notice that λΩ(x, y, t) ⊆ S1∪S2 and λΩ(z, w, r) ⊆ S1∪S2. Since R1, R2 and
R3 coincide on S1, on S2, and on Bε(a) for all a ∈ {x, y, t, z, w, r}, it follows
from IIA-IS[εNλEFA] that

(y, t, x)Ī(R′)(x, y, t) ⇔ (y, t, x)Ī(R)(x, y, t)

and (w, z, r)Ī(R′)(z, r, w) ⇔ (w, z, r)Ī(R)(z, r, w).

By transitivity, (x, y, t)P̄(R)(x, y, t), which is impossible.
Case n = 2k. Partition the population into k pairs, and construct an
argument similar to the case n = 2, with the consumption bundles x =
(10ε, (2ε)/(nλ), 0, ...), y = (20ε, (2ε)/(nλ), 0, ...), z = ((2ε)/(nλ), 20ε, 0, ...),
w = ((2ε)/(nλ), 10ε, 0, ...), and the allocations (y, x, y, x, ...), (x, y, x, y, ...),
(z, w, z, w, ...) and (w, z, w, z, ...).
Case n = 2k + 1. Partition the population into k − 1 pairs and
one triple, and construct an argument combining the cases n = 2 and
n = 3, with the consumption bundles x = (10ε, (2ε)/(nλ), 0, ...), y =
(20ε, (2ε)/(nλ), 0, ...), t = (15ε, (2ε)/(nλ), 0, ...), z = ((2ε)/(nλ), 20ε, 0, ...),
w = ((2ε)/(nλ), 10ε, 0, ...), r = ((2ε)/(nλ), 15ε, 0, ...), and the allo-
cations (y, x, y, x, ..., y, t, x), (x, y, x, y, ..., x, y, t), (z, w, z, w, ...z, r, w) and
(w, z, w, z, ..., w, z, r).
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Figure 1: Proof of Lemma 7
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Figure 2: Proof of Proposition 5
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